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Abstract 

This paper calibrates through loss functions the parameters of Heston’s stochastic volatility model by 

using two different methods: minimizing a nonlinear objective function (a loss function) with constraints 

on the values of the parameter and using a differential evolution algorithm. Both methods are applied to 

implied volatilities on the Mexican Stock Exchange Index with four maturities and twenty-eight strike 

prices. The selection criterion for the parameters is minimizing the value of the mean square error of the 

implied volatility. The first method has a better performance with less error and time. However, empirical 

results show that for both methods the adjustment of implied volatilities is better for options with long-

term maturities than for short-term maturities.  
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Introduction 

 

In the last decades, many stochastic volatility models (SVMs) for option pricing have arisen as an 

alternative (or generalization) to the standard Black-Scholes-Merton (BSM) model (Black and Scholes, 

1973; and Merton, 1973). Among the main limitations of the BSM model is the assumption of constant 

volatility. Stochastic volatility models undertake this problem under the assumption that prices and their 

volatility are stochastic processes affected by several risk factors. In this regard, SVMs handle more 

consistent prices. Unlike the BSM model, the SVMs considers stylized facts, such as implied volatility 

smile and skewness, as observed in derivative markets. The latter handle the leverage effect, i.e., volatility 

rises after price declines. That is, the asset price and its volatility are negatively correlated. The best known 

SVMs are those from Hull and White (1987), Stein and Stein (1991), Heston (1993), and Schöbel and Zhu 

(1999). In particular, Hull and White’s (1987) approach expand the asset price with a Taylor series 

function up to terms of third order, and Heston’s (1993) model provides a closed formula that requires 

numeric methods.1 

A main issue of option pricing models is their capability of generating volatility structures that 

are consistent with the expiration date and the strike price in order to capture the behavior of the underlying 

asset return distribution. There are three important features to be considered once a model is proposed: 

tail risk, option pricing, and implied volatility. Tail risk is empirically defined as the probability that the 

underlying asset return will move more than three standard deviations from its mean. The BSM model 

underestimates tail risk since the forecasted probability for extreme variations is low. This is because in 

the BSM model the tails of the asset return distribution are driven by a normal distribution. Thus, in this 

context the models of Hull and White (1987), Stein and Stein (1991), and Heston (1993) exhibit higher 

performance than the BSM model allowing estimating the probabilities for unexpected falls in the asset 

price (Gulisashvili and Stein, 2010). 

Volatility is an unobservable variable that measures the relative changes in an asset price. Often 

the volatility is also seen as the instantaneous standard deviation of the asset returns. It important to point 

out that through periods of low volatility, asset prices do not change very much; however, in periods of 

high volatility, significant variations are shown for the asset prices. In the BSM model, volatility is 

constant and positive until the expiration date. In contrast, a SVM, volatility is described by a non-negative 

stochastic process. For example, in Hull and White’s (1987) model, volatility dynamics follows a 

 
1 More work dealing with calibrating SVM can be found in: Venegas-Martínez (2005), (2010), Ortiz-Ramírez, 
Venegas-Martínez and López-Herrera (2011), and Ortiz-Ramírez, Venegas-Martínez and Durán-Bustamante (2014). 
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geometric Brownian motion. In Stein and Stein’s (1991) model, volatility follows an Ornstein-Uhlenbeck 

process or the absolute value. While in Heston’s (1993) model, volatility is driven by the square root of 

the Cox-Ingersoll-Ross’ (1985) process. 

The term “implied volatility” appeared for the first time in the work of Latané and Rendleman 

(1976), called “implied standard deviation.” These authors studied the standard deviations of returns on 

assets implied in observed call options prices when an investor values options prices under the standard 

BSM model. When implied volatility is obtained with options price data, and the strike price and 

expiration date are plot, the implied volatility surface is not flat, and changes along with the strike price 

and expiration date. This is what is known as implied volatility smile. 

In relation to the estimation of the parameters of stochastic volatility, there are three main 

statistical techniques: maximum likelihood (ML), the generalized method of moments (GMM), and the 

market-based (MB) method. The latter minimizes the spread or market volatilities obtained from the 

theoretical model and the data market, e.g., using a loss function (Bakshi, Cao, and Chen, 1997; and Bams, 

Lehnert, and Wolff, 2009). In this context, innovations in the computational science field offer 

considerable advantages to the financial industry, e.g., evolutionary computation, which has developed 

optimization methods based on evolutionary algorithms, representing an alternative to traditional 

optimization methods (either deterministic or stochastic) whenever the latter fail or the computational cost 

is high. Genetic algorithms are computational algorithms based on Darwinian evolution, which use 

operators such as reproduction, mutation, and selection to evolve a set of candidates or possible solutions 

to a given optimization problem. Gilli and Schumann (2011) provided a method using differential 

evolution to calibrate the Heston model and proposed only one loss function with artificially generated 

data. A notable finding is the utilization of alternative methods to decrease the risk model and the selection 

criteria of parameters. On the other hand, Cui, del Baño and Germano (2017) propose an efficient 

algorithm to calibrate the Heston model with nonlinear least squares using the Levenberg (1944) method 

by using the alternative representation of the characteristic function and avoiding discontinuities. 

Soler and Kizys  (2017) review some literature related to the use of evolutionary algorithms to 

solve classic and emerging problems in the field of finance. A non-exhaustive list of examples includes 

portfolio optimization, index tracking, enhanced indexation, credit risk, stock investments, financial 

project scheduling, option pricing, feature selection, bankruptcy and financial distress prediction, and 

credit risk assessment, they conclude that the use evolutionary algorithms in finance is becoming 

increasingly more popular among researchers from different communities in order to make efficient 

decisions. In Liu et al (2019) a method to calibrate stochastic volatility models using artificial neural 

networks is proposed that includes three phases: training, prediction and calibration. Some relevant results 

are the efficiency and precision of the calculations when compared with other methods such as differential 
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evolution that avoids getting stuck in a local minimum. In Palmer (2019) it is addressed a number of 

problems in computational finance, characterized by their high demand for computation time and 

resources. One of them is the calibration of the Heston model with variants of evolutionary algorithms 

such as particle swarm optimization (PSO) and differential evolution (DE). State-of-the-art DE algorithms 

were found to provide excellent calibration performance, and the prior use of rudimentary DE in the 

literature underestimates the use of these methods. 

This paper is aimed at calibrating the parameters of Heston’s SVM with several loss functions 

by using two different methods: the first one minimizes a nonlinear function of several variables with 

constraints, and the second one employs the differential evolution algorithm. Both methods are applied to 

a set of implied volatilities on the Mexican Stock Exchange Index (IPC Spanish acronym for Indice de 

Precios y Cotizaciones) with four maturities and twenty-eight strike prices. The selection criterion for the 

parameters is minimizing the value of the mean square error of the implied volatility. It important to point 

out that the mean squared loss function weighted by the square of the vega reaches the minimum value by 

the first method with less error and time. Moreover, the empirical results show that for both methods the 

adjustment of implied volatilities is better for options with long-term maturities than those for short-term 

maturities, and the value of rho is negative, which means that the slope of the implied volatility curve is 

negative and is closely related to the asymmetry of the underlying asset returns distribution. The main 

conclusion is that a change in the slope of implied volatility reflects the supply and demand effects of 

options. Thus, high premium will move in the direction that market participants expect the underlying to 

move. 

The structure of the paper is as follows: the next section provides a short review of SVMs; 

section 3 describes briefly the Heston model; section 4 describes the calibration of parameters using 

several loss functions; through section 5, the differential evolution algorithm to calibrate Heston’s model 

parameters is defined; in section 6, the Heston model parameters are calibrated by using loss functions 

according to the two methods of the previous sections, both methods are implemented for a set of implied 

volatilities of the IPC. Finally, in section 7, conclusions are given. 

 

A Short Review of Stochastic volatility models 

 

According to Garman’s (1976) theoretical proposal, an option price with stochastic volatility satisfy a 

second-order partial differential equation (PDE) with two fundamental variables: strike price and 

volatility. Volatility is not a trading asset, so arbitrage cannot eliminate volatility risk. Therefore, the 

market price is included in the PDE. Usually, the risk premium is zero or a constant volatility proportion. 

Final and boundary conditions for the option contracts state the premium. In these option pricing models; 
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underlying volatility is explicit and its parameters are obtained by statistical methods. The PDE solution 

from which the option price is obtained engender additional problems, since most of the time closed 

formulas are not available, and the least it can be asked for is an analytical solution as a prerequisite for 

the empirical work. 

Wiggins’ (1987) work solves a PDE with a finite difference method for the logarithmic 

transformation of a state variable. Hull and White (1987) worked with a simple power series 

approximation technique based on the conditional underlying distribution of the average value of the 

stochastic variance. Stein and Stein (1991) and Heston (1993) proposed an analytic approach using the 

inverse Fourier transform. Of these three methods, the PDE numerical solution is the best known, but also 

the most computationally expensive. Hull and White’s (1987) and Stein and Stein’s (1991) approaches 

depend on the average stochastic variance distribution and assume instant correlation of state variables 

equal to zero, and Hull and White’s (1987) approach is more practical; however, Heston (1993) claimed 

that the Stein and Stein (1991) model works with the inverse Fourier transform even if the correlation is 

different from zero. On the other hand, Schöbel and Zhu (1999) developed a model with two correlated 

Brownian motions and estimated the characteristic function of the logarithmic price through a system of 

stochastic differential equations. Also, Zhu (2010) proposed a double root stochastic volatility model akin 

to Longstaff´s (1989) model. Date and Islyaev (2015) proposed an SVM based on a deterministic time 

structure modified by an escalated random variable. In this case, a closed approximation is obtained for a 

European-type option premium using higher order Greeks from its volatility.  

 

Revisiting Heston’s SVM 

 

An important feature in the Heston model is that the characteristic functions of the risk neutral 

probabilities are the solution to a second-order PDE (Venegas-Martínez, 2008). Using these probabilities, 

a formula is obtained to value a European call option under the assumption that volatility is stochastic. In 

this case, there is a correlation between the volatility and the underlying price, while the strike price is 

stated by the put-call parity. There are some complications with Heston’s model because it includes 

complex variables. Therefore, the option price is obtained by calculating the probability that the call option 

expires in the money. This probability is obtained by calculating the inverse of the characteristic function 

for the logarithm of the underlying price. The formalization of the Heston model is as follows. The 

underlying price tX  is driven by the following stochastic differential equation: 
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1

d
d d tt

t

t

X
t v B

X
= +  

where   denotes the annual average return and 1

tB  is a Brownian motion or Wiener process 

(normal independent increments with zero mean and variance linearly depending of time). It is important 

noticing that Heston model uses the variance tv  instead of the volatility tv . Indeed, the variance 

follows the Uhlenbeck and Ornstein (1930) process for volatility, denoted by .t tg v=  Thus, 

2d d d ,t

t tg g t B = − +  where 
2

tB  is a Wiener process correlated to
1

tB , i.e., 

1 1Cov(d ,d ) .t tB B =  Using Itô´s lemma with 
2

t tv g= , the variance dynamics is obtained, and in 

this case, according to Cox, Ingersoll, and Ross (1985), the mean reversion process for the variance is: 

 

( ) 2d d d ,t

t t tv v t v B  = − +  

(1) 

where 
22 , / 2    = = , and 2 = . If ,  , and  satisfy the conditions 

22   and 0 0v  . The above stochastic process is always positive, and the distribution of (1) is 

a non-central chi-squared. Moreover, the variance always has a mean reversion structure, where   is the 

speed of adjustment toward the mean, 0,   which is the long-term level of tv , and   the 

instantaneous volatility of the variance. Intuitively, the parameter  , in (1), is such that if the variance is 

become greater, then the variance is attracted toward  . Regarding the estimation of the parameters, we 

have 0v  as an unobservable initial state variable (Bakshi et al., 1997). In this paper, 0v  is considered as 

a parameter to be estimated. To estimate the price of a European-type call option it is used: 

 

( ) ( ) 1 2,0 ( , , ) ( , , ).tyr r

T TC K e E X K e y v e K y v  − −= − =  −     

(2) 

Here, ( , , )j y v   stands for the probability that the call option expires in the money (

TX K ). In this case, lnt ty S=  (natural log of the asset price), tv  is variance at time t ,  
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T t = −  is the term, and ( , , ) (ln ln ), 1,2.j Ty v P X K j =  =  If the characteristic 

functions 1( ; , )y v   and 2 ( ; , )y v   related to j  are known, it is possible to obtain each j  

from its characteristic function by using the inversion theorem (see Waller, Turnbull, and Hardin, 1995): 

 

ln

0

( ; , )1 1
(ln ln ) Re d

2

i K

j

j T

e y v
P X K

i

  


 

−
  

 =  = +  
 

  

(3) 

At maturity, when t T= , i.e., 0 = , the probabilities are constraints on the terminal 

condition ln( , ,0) 1j y Ky v  = , which implies that at maturity, when TX K , the probability that 

the call option is in the money is equal to 1. In summary, according to Heston (1993), the call option price 

is: 

 

( ) 1 2( , , ) ( , , )ty r

TC K e y v e K y v −=  −   

(4) 

where 1  and 2  are defined in (2), and the characteristic functions are given by: 

 

( )( )( ; , ) exp , ( , )j j jy v C D v i x      = + +  

(5) 

( )

( )

2 2

2
2 2

1 1
2ln , ,

1 1

, (2 ).

j j

j

d d

j j j

j j j j d

j j

j j

j j j j

j j

g e b i d e
C r i b i d D

g g e

b i d
g d i b u i

b i d

 




   

 


   



    − − + − 
= + − + − =    

− −        

− +
= = − − −

− −

 

 

where 1i = −  is the imaginary unity, 1 2 11/ 2, 1/ 2,u u b   = = − = + − , and 

2b  = + . Here,   is the parameter that represents the volatility premium as a function of the asset 

price, time and volatility. To obtain the option price, it is necessary to estimate the integrals for j  in 
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(2), and this leads to a numerical integration method. To estimate the put option price, the put-call parity 

is used:  

( ) ( ) .r

T T tV K C K Ke X−= + −  

(6) 

Another relevant property of this model is that implied volatilities are estimated by option prices 

generated according to the model, and these have volatility smile skew. Stock options regularly have a 

negative slope on the implied volatilities. It is remarkable that when calibrating the parameters of Heston’s 

model by using market data, the correlation parameter value is negative most of the time.  

 

 

Figure 1. Effect of the parameters on implied volatility with different   values. 

Source: own elaboration. 

 

The correlation parameter   determines the skew trend. If 0  , there is a positive slope, 

otherwise there is a negative slope. This effect is shown in Figure 1 by generating implied volatilities 

using the following values: 100,X =  0.05,r =  0.25T t = − =  

2,  0.01,   0  = = = , and 0 0.01v = , with a strike range oscillating from 90 to 110. If the 

volatility values increase the variance, the smile skew increases, i.e. a higher   parameter increases the 

implied volatility curvature, this can be seen in Figure 2 for the same values but using 0 = .  
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Figure 2. Effect of the parameters on implied volatility using different values of  . 

Source: own elaboration. 

 

The parameters ,   and 0v  manage the smile level. The adjustment speed of the mean 

reversion,  , also controls the curve up to some point, and using bigger values of  , the implied 

volatility curve flattens, as seen in Figure 3.  

 

 

Figure 3. Effect of the parameters on implied volatility using different values of  . 

Source: own elaboration. 
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When the values of   and 0v  either increase or decrease, a parallel movement can be observed 

in the volatility smile, as seen in Figures 4 and 5. To graph the plots, the bisection algorithm is used with 

the BSM model to calculate the set of implied volatilities provided that prices are estimated using the 

Heston model. 

 

 

Figure 4. Effect of the parameters on implied volatility with different values of  . 

Source: own elaboration. 

 

 

Figure 5. Effect of the parameters on implied volatility using different values of 0v . 

Source: own elaboration. 
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Loss functions 

 

One alternative method for calibrating the parameters of the Heston model is to use loss functions. This 

method minimizes the difference amongst market prices and estimated prices, or between the market-

implied volatilities and the Heston model. The set of the estimated parameters   corresponds to the 

values that minimize the value of the corresponding loss function in such a way that the model prices or 

the implied volatilities are close enough to the potential market prices. To do this, it is necessary to use a 

minimization algorithm with the following constraints:  00, 0, 0, 0, 0.9,0.9 .v        −  

In this regard, the loss functions include trading asset prices at a point in time (or its implied volatility) 

leading to risk neutral parameters in the Heston model. Let us assume that there is a set of stock maturities 

tM  with ( 1, , )t t T =   and a set of strike prices ( 1, , )k KK k M=  . For each combination 

maturity-strike ( , )t kK , there is a market price ( , )t k tkP K P =  and the corresponding price 

obtained by Heston’s model ( , ; )t k tkP K P  = . Moreover, it is possible to link each option to a 

weight tk . There are several methods of defining a loss function, generally categorized as base prices 

and base-implied volatilities. The former minimizes the error between market quotes and the estimated 

parameters by a given model. The error is defined as the squared difference between market quotes and 

the model estimations, or the difference absolute value. It is also possible to use the relative error, i.e., 

estimating the parameters by using the loss function of the mean squared error (MSE) and minimizing: 

 

( )
2

1

,

1
,tk tk tk

t k

L P P
M

 = −  

(7) 

with respect to ,  where M is the number of quotes. The other commonly used loss function 

is the so-called relative loss of the mean squared error (RLMSE) given by: 

 

( )
2

2

,

1
.

tk tk

tk

t k tk

P P
L

M P


−
=   

(8) 

Another way of defining the error is by taking the absolute value in (7) or (8). 
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A shortcoming of the loss function 1L  is that options with short maturity, out of the money, 

and with low value contribute little to the sum in (7); the optimization process adjusts options in the money 

to the long term, impacting other options. A solution to this issue is to use only options in the money in 

such way that in (7) call options are used for strike prices smaller than the underlying price and put options 

for strike prices greater than the underlying price. Another solution is the RLMSE in (8), but the problem 

with 2L  is the opposite. In fact, provided that tkP  is in the denominator, options on the low-price market 

saturate the sum in (8), although this excess is repaired by allocating the weights tk  to the terms in the 

objective function. It turns out that the selection weight process is arbitrary. 

The second category of loss functions is associated with minimizing the error between the 

implied volatilities and the parameters estimated by a theoretical model. This can be also specified as the 

relative difference, absolute difference or squared difference between the implied volatilities and those 

given by a theoretical model. This kind of loss function is sensitive because in the derivatives market, 

options quotes are made in terms of the implied volatility. The adjustment precision of the model is 

obtained by comparing the implied volatilities and the model volatility, i.e., the calibration parameters, 

using the loss function of the MSE of the implied volatility: 

 

( )
2

3

,

1
ˆ ˆ ,tk tk tk

t k

L
M

   = −  

(9) 

where ˆ ˆ( , )tk t kK  =  and ˆ ˆ( , ; )tk t kK   =   are respectively the market-implied 

volatilities and the model volatilities. It is also possible to use the relative and absolute versions of 3L . 

The principal drawback of (9) is that it needs exhaustive numeric calculation, i.e., for each iteration, the 

optimization process estimates all the prices with the Heston model tkP
, and then a root algorithm is used 

as a bisection algorithm to calculate the implied volatility ˆ
tk 

 in tkP
 and thus finally is obtained 

( )
2

ˆ ˆ
tk tk  − . A solution to this problem is to use the loss function of the weighted MSE times squared 

vega (Christoffersen, Heston, and Jacobs, 2009), which is an approximation to the function in (9). In this 

case: 
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( )
2

2
,

4

1
,

tk tk

t k tk

P P
L

M 

−
=   

(10) 

where 
2

tk  is the option price sensitivity in the BSM model in relation to the market-implied 

volatility tkv  evaluated at maturity t  at strike kK , defined as: 
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2
( ) , and ,t

tk t

q k

tk tk t tk

tk t

X
r q v

K
Xe z z

v





 


   
+ − +  
  =  =  

 

Here, r is the continuously compounded interest rate, q is the continuously compounded 

dividend yield, and ( )   is the cumulative distribution function of a standard normal random variable. 

The main improvement of the loss function 4L is the time reduction in its execution, although there is a 

loss of precision in the calibration of parameters. Another advantage is that for each evaluation of the loss 

function, it is necessary to recalculate the option price. The analytic expression of the characteristic 

functions guarantees that these calculations are done efficiently. 

 

Differential evolution: an algorithm based on evolutionary computation 

 

While traditional optimization methods (i.e., mathematical programming) are limited tools for finding 

optimal solutions, heuristic algorithms, most of the time, offer a better alternative. In recent years, the 

blend of computer science and biology has given rise to a new paradigm for solving highly complex 

problems, the so-called evolutionary computation. There are three main paradigms that make up 

evolutionary computation: evolutionary strategies, evolutionary programing, and genetic algorithms. It is 

worth mentioning that genetic algorithms are the most common method of evolutionary computation used 

in finance Ponsich, López and Coello (2013).2  

 
2 An introduction to evolutionary computing is given in Simon (2013), in which several approaches to solving 
optimization problems are presented. 
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Genetic algorithms were developed by Holland (1975) and they use the process of natural 

selection to find the optimal solution through a series of populations that combine and mutate solutions to 

reach the optimum. Different optimization problems require different methods of mutation and 

combination of solutions (Bradshaw, Walshaw, Ierotheou, and Parrott, 2009, p. 28). Genetic algorithms 

are also known as evolutionary algorithms because they are inspired by the theory of evolution of Charles 

Darwin, and generally work with operators such as reproduction, crossover, and mutation. 

The differential evolution (DE) paradigm was developed by Storn and Price (1995). Like many 

other optimization algorithms, the DE was motivated by the determination of coefficients using the 

polynomials of Tchebyshev3 and the optimization of the coefficients in the digital filter. The first 

publication of DE dates back to Storn and Price (1997). The DE algorithm is described in four distinct 

stages (Vollrath and Wendland, 2009): initial selection of the population, mutation, recombination, and 

selection. These stages are typical in most evolutionary algorithms; however, the DE is unique in the way 

the parameter sets are mutated. The stages of DE applied to calibration of Heston’s model are listed as 

follows: 

a) Initial population. Generate an Pn M  array of randomly chosen parameter values. In 

this case, n  is the number of parameters and PM  is the number of members of the 

population. The rows of the matrix must satisfy the restrictions of the parameters. Lower 

and upper limits must be chosen in such a way that the random values for the parameters 

are feasible, v.g., 1 1,−   3   and 00 10, 0, 0.v      For Step 2, it 

is necessary that 4PM  . This implies that with 5n = : 

 

( )1 2
(5 )

,
P

P

M
M

=P z z z  

(11) 

       and every member of P  is a parameter vector 0( , , , , ) 'i i i i i ivz    = . 

b) Mutation. For each member iz of the population ( 1, , )Pi M=  , randomly select 

another three members 1 2, z z , and 3z , different from each other and from iz . This 

 
3 A fast review of the polynomials of Tchebyshev can be seen in Venegas-Martínez (2008). 
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requires to select indexes 1 2,  , and 3 such that 1 2 3i       . For every 

member, create a new giver member: 

 

( )1 2 3 ,i F  = + −x z z z  

(12) 

where F  is a constant mutation factor that controls the size of the mutations and takes 

values in [0,2] . The giver members and components, ,ix  are used to produce a candidate 

member that either replaces iz  or not, depending on the outcomes of next steps. 

c) Recombination. The candidate element ic  is generated from the ijx elements of the giver 

and components of the member ( 1, ,5)ijz j =   according to the following: for each 

element j , a random number of a uniform variable ijU  is generated and the candidate 

element is defined as follows:  

 

,    or     

   otherwise

  if ij ij

ij

ij

j EU R
c

z

x 
=

=



 

(13) 

where E  is a randomly selected integer and R  is the denominated crossover ratio. E  

ensures that the candidate is not the same as the member, i.e., i ic z .This is because 

even if all ijU  are small and the inequality ijU R  is not fulfilled at all, the 

corresponding element ijx  will turn into the element ijc  of the candidate ic . This step is 

continued for each candidate parameter. 

d) Candidate selection. The member iz  and the candidate ic  are both introduced into the 

objective function ( )f z . If the candidate’s value is less than that of the member, the 

candidate replaces iz  as the ith term member of the population P  in (11). Thus, the 

instruction is:  
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( )

( )

1

1

 if ( ) ( ),

otherwise.

P

P

i M i i

i M

f fz c z c z
P

z z z

 
= 


 

(14) 

When all the elements of the population have admitted the procedure, the population is 

renovated, and the next generation starts over again in step 2. Therefore, the algorithm is executed for all 

generations, G . In this way, the set of parameters is chosen for the member of the population in the final 

generation with the smallest value of ( )f z . 

To further explain the above procedure, it is important to note that when evaluating a loss 

function given by equations (7)-(10) prices corresponding to a set of different strikes and maturities are 

calculated. In this case, the characteristic function φ only depends on the time to maturity, not on the strike 

price. Therefore, we can previously process the variables that are constant for a given maturity and then 

calculate the prices for all strike prices for this maturity. The following algorithm summarizes this. 

 

Algorithm 5.1 Computing option prices for a given surface. 

 

1. Set parameters, set T = maturities, set X =strikes  

2. for  T do 

3.  compute characteristic function   

4. for X  X  do 

5.      compute price for strike X, maturity   

6.          end for 

7.  end for 

8. compute objective function L 

Finally, the following algorithm summarizes the proposed methodology.  

 

Algorithm 5.2 Differential Evolution. 

 

1. set parameters , , ,P GM N F R  

2. initialize population 
( )

, , 1, , , 1, ,z

j i PP j p i M= =    
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0 0 0

0 0 0

[ ( ) rand(1, );

( ) rand(1, );

( ) rand(1, );

( ) rand(1, );

( ) rand(1, ); ]
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Lo U Lo P

Lo U Lo P

Lo U Lo P

Lo U Lo P

P M

M

M

v v v M
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=  +  −  

 +  − 
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+ − 
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3.  for k=1 to GN  do 

4.   
( ) ( ) x zP P=   

5.     for i=1 to PM  do 

6.     generate  3 21 2 1 3, ,, 1, ,PM i          

7.     Compute ( )
1 2 3

( ) ( ) ( ) ( )

, , , ,

x z z z

iP P F P P  = +  −   

8.      for 1j =  to p do 

9.  if   U R  then  
( ) ( )

, ,

c c

j i j iP P=  else 
( ) ( )

, ,

c x

j i j iP P=   

10.        end for 

11.        if  ( ) ( )( ) ( )

, ,< c x

i if P f P  then  
( ) ( )

, ,

z c

i iP P=  else  
( ) ( )

, ,

z x

i iP P=   

12.   end for 

13. end for 

14. find member with lowest value ( )( )

,find( min z

i ih f f P= =   

15. solution
( )

,

z

hP=   

 

Empirical Results 

 

This section considers a set of option prices for the Mexican Stock Exchange (BMV). The information 

was obtained from the Bulletin of the Summary of the Options Market since 06/26/2015, published by the 

Mexican Derivatives Market (MexDer). Four deadlines are considered: 84, 175, 266, and 357 days. The 

implied volatilities of the options traded were obtained from the price vendor, and the risk-free rate was 

acquired from the Mexican Central Bank (Banxico). Table 1 shows the relevant data for the calibration of 

the parameters. 
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Table 1 

Relevant data for calibration 

 

Date 

Expiration 

Date 

  Risk-free  

rate 

 IPC 

26/06/2015 18/09/2015 0.2333 3.2950  45,566.33 

26/06/2015 18/12/2015 0.4861 3.2950  45,566.33 

26/06/2015 18/03/2016 0.7389 3.2950  45,566.33 

26/06/2015 17/06/2016 0.9917 3.2950  45,566.33 

Source: own elaboration with data from BMV, MexDer and Banxico. 

 

Table 2 shows the expiration dates, strike prices (K), and implied volatilities of the IPC call 

options obtained from the price vector. There are 31 strike prices, of which 22 are options that are in the 

money and the remainder is out of the money. This is important since the loss functions previously 

presented give different results in the calibration under this assumption. 

 
Table 2 

Implied volatility of the IPC call options 

K 84/360 175/360 266/360 357/360 

35000 0.2465 0.2441 0.2324 0.2225 

35500 0.2427 0.2386 0.2281 0.2192 

36000 0.2395 0.2332 0.2239 0.2159 

36500 0.2367 0.2280 0.2197 0.2126 

37000 0.2340 0.2229 0.2154 0.2093 

37500 0.2315 0.2178 0.2112 0.2060 

38000 0.2290 0.2130 0.2070 0.2027 

38500 0.2260 0.2081 0.2028 0.1994 

39000 0.2225 0.2034 0.1985 0.1960 

39500 0.2185 0.1987 0.1943 0.1926 

40000 0.2138 0.1941 0.1901 0.1892 

40500 0.2082 0.1897 0.1859 0.1857 

41000 0.2019 0.1852 0.1817 0.1822 

41500 0.1948 0.1808 0.1775 0.1786 

42000 0.1871 0.1764 0.1734 0.1750 

42500 0.1789 0.1720 0.1693 0.1713 

43000 0.1703 0.1678 0.1653 0.1675 

43500 0.1616 0.1636 0.1614 0.1637 

44000 0.1530 0.1595 0.1576 0.1598 

44500 0.1447 0.1554 0.1540 0.1559 
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45000 0.1370 0.1515 0.1506 0.1520 

45500 0.1300 0.1478 0.1476 0.1481 

46000 0.1239 0.1444 0.1451 0.1442 

46500 0.1187 0.1415 0.1434 0.1406 

47000 0.1145 0.1396 0.1428 0.1374 

47500 0.1112 0.1399 0.1437 0.1351 

48000 0.1088 0.1446 0.1469 0.1346 

48500 0.1071 0.1541 0.1528 0.1365 

49000 0.1060 0.1652 0.1599 0.1401 

49500 0.1053 0.1758 0.1667 0.1444 

50000 0.1051 0.1860 0.1731 0.1486 

 

Source: own elaboration with data from BMV and MexDer. 

 

Figure 6 shows the implied market volatility surface and the market prices of IPC options, 

computed from the information in the bulletin. Notice the reduction in the differences in prices, excluding 

options with little premium value; for the calibration the choice of the options is a settlement price greater 

than $100, i.e. prices from K = 49000 to K= 50000 are excluded. Therefore, there are 28 strike prices and 

4 expiration dates, a total of 124 implied volatilities. An implied volatility bias is observed for each 

maturity level. Implied volatility is greater for small strike prices corresponding to call options in the 

money and put options out of the money, and implied volatility decreases as the strike price increases. 

Another feature is that this is more common for options with shorter maturities, and is flattened for options 

with greater expiration. The monotonic relationship between price and volatility shows that put options 

out of the money have a higher premium than the call option out of the money. 

 

 
Figure 6. Surface of the implied market volatility and IPC market quotes. 

Source: own elaboration with data from BMV, MexDer and Banxico. 
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Table 3 shows the parameters of the Heston model calibrated with several loss functions (MSE, 

RLMSE, and MSE of implicit volatility), the time in seconds that the calibration takes, and the value of 

each objective function. The initial values of the parameters are as follows: 

09,  0.05,  0.3,  0.05,  0.8v   = = = = = − . In this case, the minimum of a nonlinear 

function of several variables with constraints4 is determined, results of table 3 are obtained with the 

algorithm developed in Nelder and Mead (1965). The set of parameters that is chosen is the one that has 

the lowest value of MSE of implicit volatility, that is, by using the function 4L . In all three cases, it is 

observed that the value of   is negative, which means that the slope of the implied volatility curve is 

negative, as it can be seen in Figure 7. 

 

 
Table 3 

Calibrated parameters with loss functions 

       (0)v    ECM-VI Time 

1L  2.4240 0.0374 1.0590 0.0239 -0.3313 5.06E-05 32.66 

2L  15.0580 0.0274 1.9992 0.0140 -0.5583 7.67E-05 40.60 

3L  3.5429 0.0303 0.5518 0.0185 -0.7241 8.88E-05 4.574 

4L  2.6922 0.0351 0.8059 0.0197 -0.5215 3.65E-05 28.137 

Source: own elaboration with data from BMV, MexDer and Banxico. 

 
 
4 The non-linear problem is solved using the fmincon function in Matlab.  
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Figure 7. Implied market and Heston volatilities estimated by function 4L . 

Source: own elaboration with data from BMV, MexDer and Banxico. 

 

The above results show that the adjustment of implied volatilities is better for options with long-

term maturities than for short-term maturities, and the time it takes to adjust is much lower compared to 

DE, as confirmed in Table 4. 

Figure 8 shows the surface of implied market volatility and model volatility generated with the 

parameters obtained from 4L . In this case, 31 maturity terms are considered, varying from 84 to 357 

days, and there are 271 strike prices, which range from every 50 points from K=35000 up to K=48500. 

The importance of the surface lies in the fact that while bonds are characterized by maturity, options are 

distinguished by their term at maturity and their strike price, for this reason requiring a surface instead of 

a curve. In addition, the yield curve on any given day is a concise description of bond market prices. 

Another usefulness of the surface is that it is feasible to value an exotic option with the information 

generated by the volatility surface; in the case that there are deadlines at maturity and strike prices that do 

not match the deadlines of the surface, an interpolation bilinear process is carried out. 
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Figure 8. Surface of implied market volatility and model volatility using the parameters obtained from 

function 4L . 

Source: own elaboration with data from BMV, MexDer and Banxico. 

 

Table 4 shows the parameters of the Heston model calibrated with the three previous loss 

functions but using the DE algorithm. Unlike Vollrath and Wendland (2009), we chose the number of 

population members equal to 45 times the number of parameters for calibration, in such a way that 

225PM = , the probability of the crossover ratio 0.5R = , the mutation factor 0.8F = , and the 

number of generations 600G = . The initial values of the parameters for the calibration are as follows: 

09, 0.05, 0.3, 0.05, 0.8v   = = = = = − . The set of parameters that is chosen is the one 

with the lowest value of the quadratic error of implied volatility which is the function 4L . In all three 

cases, it can be observed that the value is negative, which means that the slope of the implied volatility 

curve is negative, as it can be seen in Figure 9.  

 

Table 4 

Calibrated parameters with loss functions and differential evolution 

       (0)v    ECM-VI Time 

1L
 

2.6498 0.0355 1.0073 0.0232 -0.3910 4.66E-05 210.6515 

2L  15.7152 0.0277 2.0000 0.0088 -0.5979 7.38E-05 203.7326 

3L  5.9857 0.0311 1.1976 0.0172 -0.5836 4.62E-05 28461.3763 

4L  4.6792 0.0322 1.0751 0.0185 -0.5487 4.15E-05 266.0566 

Source: own elaboration with data from BMV, MexDer and Banxico. 
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Figure 9. Implied market and Heston volatilities estimated by function 4L  using differential evolution. 

Source: own elaboration with data from BMV, MexDer and MexDer. 

 

The above results indicate that the adjustment of implied volatilities is somewhat better for 

options with long-term maturities than for short-term maturities, and the time it takes to adjust is much 

greater in comparison with loss functions.5 

Finally, Figure 10 shows the adjustment for the area of implied market volatilities and the 

surface implied market volatility, generated with the parameters of 4L  using DE. As it can be seen, the 

implied volatilities for short maturities are more sensitive than those obtained by the first method, which 

greatly affects options prices within the money as their premiums are greater than options out of the 

money. 

 
5 The non-linear problem is solved using the “fmincon” function in Matlab. 
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Figure 10. Surface of implied market volatility obtained by the parameters of function   using 

differential evolution. 

Source: own elaboration with data from BMV, MexDer and Banxico. 

 

Conclusions 

 

A relevant feature of the differential evolution algorithm is that it does not require initial parameters since 

it generates many tests of a population in parallel. Differential evolution performs sampling over the entire 

parameter space, and if it is carried out enough, it practically guarantees convergence to a global minimum. 

However, the disadvantage is that it requires a considerable number of repetitions, involving a high cost 

in time and computational resources. 

Another possibility for calibrating the parameters of a stochastic volatility model is by using 

loss functions. This approach minimizes the distance that measures the error between market prices and 

model prices, or between implicit market volatilities and those form the theoretical model. In this 

framework, the Heston model generates consistent market volatility smiles for relatively distant maturities 

(six months and more). However, for short maturities, it presents problems as it does not generate 

consistent volatility smiles with the market; this depends to a large extent on the dynamics of the 

underlying asset, which affects the market quotations at a given time. 

The effect of the variation of the parameters of the Heston model on the implied volatility curve 

has been examined in this research, and it is observed that the correlation parameter   determines the 

direction of skew; 0   corresponds to a positive slope and 0   to a negative slope; while the 

volatility of the variance   determines the curvature of the smile. The parameters ,  , and 0v control 

the level of the smile. 
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The contribution of this study can be summarized as follows, the calibration of parameters of 

the Heston model with loss functions and differential evolution algorithm, in particular with a loss function 

of the weighted MSE times squared vega which employs option price sensitivity in the Black and Scholes 

model in relation to the market-implied volatility. An advantage of this procedure is that it is able to 

produce precise estimates, but at the expense of increased computation time. 

In summary, in this investigation, the parameters of the Heston stochastic volatility model with 

loss functions have been calibrated using two different methods: the first determines the minimum of a 

nonlinear function of several variables with constraints; the second employs the algorithm of differential 

evolution. The two methods are applied to a set of IPC call options with four maturities and twenty-eight 

strike prices. The criterion for choosing the parameters is the one that has the minimum value of the MSE 

of implied volatility. The results for the two proposed methods indicate that the function of loss of the 

MSE weighted by the square of the vega is the one that has the minimum value, but with a minor error 

and time cost using the first method. In addition, in both methods the adjustment of implied volatilities is 

better for options with long-term maturities than for short-term maturities, and the   value is negative, 

which means that the slope of the implied volatility curve is negative which reflects a skewed distribution 

of the underlying asset's return. This implies that the volatility modeled as a stochastic function of the 

underlying asset price is in line with assumption of stochastic volatility.  
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