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Abstract

This research develops a stochastic model of the consumer’s 
decision making under an environment of risk and uncertainty. 
In the proposed model agents perceive that a mixed diffusion-
jump process drives the exchange rate depreciation and a diffu-
sion process governs the real interest rate, these processes are 
supposed to be correlated. We generalize the proposals from 
Giuliano and Turnovsky (2003), Grinols and Turnovsky (1993) 
and Merton (1969 and 1971) by including sudden and unex-
pected jumps in the stochastic dynamics of relevant variables 
in the intended model. We examine portfolio, consumption and 
wealth equilibrium dynamics under the optimal decisions. We 
also assess the effects on portfolio, consumption and welfare of 
sudden and permanent changes in the parameters determining 
the expectations of the exchange rate depreciation.

Keywords: portfolio choice, intertemporal consumer choice, 
consumer behavior.

JEL classification: G11, D91, D10.
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Decisiones de portafolio óptimo y consumo bajo riesgos de tipo de cambio y 
tasa de interés. Un enfoque de difusión con saltos

Resumen

Esta investigación desarrolla un modelo estocástico sobre las decisiones de los consumido-
res en un ambiente de riesgo e incertidumbre. En el modelo propuesto, los agentes perciben 
que la tasa de depreciación del tipo de cambio es conducida por un proceso de difusión 
con saltos y que la tasa de interés real es guiada por un proceso de difusión; se supone que 
estos procesos están correlacionados entre sí. Este trabajo generaliza las propuestas de 
Giuliano y Turnovsky (2003), Grinols y Turnovsky (1993) y Merton (1969 y 1971) a través 
de la inclusión de saltos repentinos e inesperados en la dinámica estocástica de las varia-
bles relevantes del modelo propuesto. Asimismo, se examina la dinámica de equilibrio del 
portafolio elegido, la demanda de consumo y la riqueza, en el equilibrio, asociados a las 
decisiones óptimas. Además, se evalúan los impactos que sobre el portafolio, el consumo y 
el bienestar tienen los cambios repentinos y permanentes en los parámetros que determinan 
las expectativas de la depreciación del tipo de cambio.

Palabras clave: selección de portafolio, selección intertemporal de consumo, conducta del 
consumidor.

Introduction

This paper develops a stochastic model of consumer’s decision making in an en-
vironment of risk, emphasizing the role of uncertainty in the dynamics of both 
the depreciation rate and the real interest rate. It is assumed that 1) the exchan-
ge rate depreciation follows a mixed diffusion-jump process, and 2) the expected 
dynamics of the real interest rate is driven by a Brownian motion. These proces-
ses are supposed to be correlated; as stylized fact shows. This framework gene-
ralizes the proposals in Giuliano and Turnovsky (2003), Grinols and Turnovsky 
(1993), and Merton (1969) and (1971) by including sudden and unexpected jumps 
in the stochastic dynamics of relevant variables. By assuming logarithmic utility, 
we examine the equilibrium dynamics of portfolio, consumption and wealth in an 
environment of risk and uncertainty. We also study the effects on portfolio, con-
sumption and economic welfare of once-and-for-all changes in the key parameters 
that determine the expected depreciation rate.

The financial literature has by now exhausted a class of deterministic models ai-
med at explaining the consumer’s decision making under risk and uncertainty. 
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Most of the existing models ignore uncertainty, providing a very elaborate econo-
mic interpretation of why uncertainty does not need to be considered. Until fairly 
recently, no many attempts had been made to study consumers’ portfolio decisions 
under exchange rate and interest rate risks; see for instance: Penati and Pennacchi 
(1989) and Svensson (1992).

The analytical framework is based on Venegas-Martínez (2001), (2005), (2006a), 
(2006b), (2006c), (2008) and (2009) and Merton (1969) y (1971). The proposed 
model, in which the exchange rate depreciation is driven by a mixed diffusion-
jump process and the expected dynamics of the real exchange rate is modeled by a 
diffusion process (useful approximations to reality), is by itself capable of dealing 
with a range of interesting issues. Moreover, we analyze consumption and wealth 
equilibrium dynamics, and examine the effects on consumption and welfare of 
sudden changes in the expected depreciation of the exchange rate.

This research is organized as follows. In the next section, we work out a Ramsey-
type, one-good, cash-in-advance, stochastic model where agents have expectations 
of devaluation driven by a mixed diffusion-jump process and the expected dy-
namics of the real interest rate is guided by a diffusion process. In section 3, we 
solve for the equilibrium dynamics, undertake the policy experiment, and exami-
ne the welfare implications. We also examine the dynamic behavior of portfolio, 
consumption and wealth, and address a number of exchange-rate policy issues. 
In section 4, we present conclusions, acknowledge limitations, and make sugges-
tions for further research. Three appendices contain some technical details on the 
consumer’s choice problem.

Structure of the economy

In order to derive solutions which are analytically tractable, the structure of the 
economy will be kept as simple as possible. Let us consider a small open stochas-
tic economy with a representative infinitely lived investor in a world with a single 
perishable consumption good. The good is freely traded at a domestic price P

t
, 

determined by the purchasing power parity condition, P
t
 = P

t
*E

t
, where P

t
* is the 

dollar price of the good in the rest of world, and E
t
 is the nominal exchange rate. It 

will be assumed, from now on, that P
t
* is fixed and for simplicity equal to 1, which 

readily implies that the price level, P
t
, is equal to the exchange rate, E

t
. The initial 

value E0 is supposed to be known.
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The ongoing uncertainty about the dynamics of the expected rate of depreciation 
is driven by a mixed diffusion-jump process. In such a case, we suppose that the 
representative investor perceives that the expected inflation rate, dP

t 
/P

t
, and thus 

the expected rate of depreciation, dE
t 
/E

t
, is driven  by a geometric Brownian mo-

tion with Poisson jumps:

                                                 
  (1)

where the drift ε  is the mean expected rate of depreciation conditional on no 
jumps, σ  is the instantaneous volatility of the expected rate of depreciation, v is 
the mean expected size of upward jumps in the exchange rate, and z

t
 is a standard 

Wiener process, that is, dz
t  is a temporally independent normally distributed ran-

dom variable with E[dz
t ] = 0 and Var[dz

t 
]= dt. The number of devaluations per 

unit of time occurs according to a Poisson process q
t
 with intensity λ , so 

              Pr{one unit jump during dt} = Pr{dq
t = 1} = λ dt + o(dt),  (2)

                                                                 
whereas 

                 Pr{no jump during dt} = Pr{dq
t = 0} = 1 – λ dt +o(dt).  (3)

We initially set q0 = 0. Moreover, processes dz
t
 and dq

t
 are assumed to be correla-

ted. Because of the specific interest of this paper in once-and-for-all changes in the 
rate of depreciation and in the intensity parameter, we assume that  
are all positive constants. Investors will hold two real assets: real cash balances, 
m

t = M
t
/P

t
, where M

t
 is the nominal stock of money, and an international bond, b

t
. 

Thus, the investor’s real wealth, W
t
, is defined by

                                                            (4)

                                                                 
where the initial wealth, W0 , is exogenously determined. Furthermore, we suppose 
that the rest of the world does not hold domestic currency (i.e., the peso is not an 
asset for foreigners). The stochastic dynamics of the real rate of return on bonds 
evolves in accordance with

d d d d dt t
t tt t

P E t z q
P E

ε σ ν= = + +

t t tW m b= +
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                                                                        (5)

where the drift, r0, is the mean rate of return, 0σ  is the instantaneous volatility 
of the expected rate of return, and x

t
 is a standard Wiener process; i.e., dx

t
 is a 

temporally independent normally distributed random variable with E[dx
t
] = 0 and     

                           Moreover, we suppose that dz
t
 and dx

t
 are correlated

                                                                     
  (6)

where Cov(dx
t
,dz

t
) is the covariance between dx

t
 and dz

t
. We will assume that dis-

turbances in the return rate and the exchange rate are positively correlated, that is, 
Cov(dx

t
,dz

t
) > 0.

If capital is perfectly mobile, the real domestic interest rate, defined as  
(dR

t
 /R

t
) – (dE

t
 /E

t
), must be equal to dr

t
 /r

t 
over any instant. Consequently, the 

expected nominal interest rate is given by

                                                      (7)

where 0 ,i r ε= +  is the mean expected nominal interest rate conditional on no 
jumps.

Consider now a Clower-type constraint of the form, m
t
  ≥ α c

t
, where c

t
 is con-

sumption and α  > 0  is the time that money must be held to finance consumption. 
Given that i > 0, the investor has incentive to hold only

                                                                        (8)

The stochastic rate of return of holding real cash balances, dR
M
, is simply the per-

centage change in the inverse of the price level. By applying the generalized Itô’s 
lemma for diffusion-jump processes to the inverse of the price level with (1) as 

0 0d d d ,t t t tr r r t r xσ= +

0

Cov(d ,d )d d d ,t t
t t

x zz x t
σ σ

=

0
d d d d d ,t

t t tt

R i t z x q
R

σ σ ν= + + +

.t tm cα=
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the underlying process (see Appendix III, formula (III.1), see also Lamberton and 
Lapeyre (1996)), we obtain:

                              
      (9)

 
Investor’s Portfolio Problem

The stochastic investor’s wealth accumulation in terms of the portfolio shares, 

                           ω t = mt /Wt,         and         1 –ω t = bt /Wt, 

and consumption, c
t
 (the numeraire good), is determined by the following system 

of stochastic differential equations:

                                         

(10)

where Q
t
 = 1/P

t
 is the price of money in terms of goods. Observe that the portfolio 

optimal decision *
tω , which is associated with monetary real balances, is, in virtue 

of the cash-in-advance constraint, linked with consumption. Of course, the optimal 
complementary proportion *1 tω−  is intended for holding bonds. To avoid unneces-
sary technical complications, we exclude the investor real wage from the analysis. 
By solving system (10) in terms of dW

t
 /W

t
, we get

  
(11)

21 1d d ( )d d 1 d .
1M t t t

t

R P t z q
P

ε σ σ
ν

   = = − + − + −   +  

1

2

d d d(1 ) d ,

d 1( )d d 1 d ,
1

,

t t t t
t t

t t t t

t
t

t

t
t

t

W Q r c t
W Q r W
Q t z qtQ

c
W

α

ω ω

ε σ σ
ν

ω−

= + − −

 = − + − + − + 

=

( ) ( ) ( )
0 0 0

1 1
d d d d d 1 d ,

1
t

t t t t t t t tW W r t z x x q
ν ω

ρ ω ω σ σ σ
ν

 + − 
= − − + + + −  +  
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where ρ  depends only on exogenous parameters. Our analysis will be only con-
cerned with small values of the total volatility compared with the mean expected 
rate of depreciation in such a way that

                                                           (12)

The competitive, risk-averse investor derives utility from consumption, c
t
, and 

wishes to maximize her/his overall discounted, Von Neumann-Morgenstern utili-
ty, at time t = 0, given by

                                                     
 (13)

where F0 is all available information at t = 0. In order to generate closed-form 
solutions, we have chosen the logarithmic utility function. 

Comparative Statics 

In maximizing (13) subject to the wealth constraint as given in (11), the first-order 
condition for an interior solution is (see Appendix I)

                                                          
 (14)

where A  and B  depend on parameters and on  Cov(dx
t
,dz

t
) > 0. We have not 

imposed any positivity constraint of the form          , so unrestricted short sales 
are permitted. In what follows, without loss of generality, we will suppose that 
Cov(dxt,dzt) is bounded from above so that
                                                           

(15)

From (15), we immediately find that A > 0. Observe that (14) is a cubic equa-
tion with one negative and two positive roots, and only one root satisfying  
0 < ω * < 1.

2 2
0 0.β ε σ σ≡ − − >

( )
0 ,

1 1
r A Bλν ω
ω ν ω

− = +
+ −

0 Cov(d ,d ) .t tx z β< <
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We have now the first important results: a once-and-for-all increase in the rate of 
depreciation, which results in an increase in the future opportunity cost of purcha-
sing goods, leads to a permanent decrease in the proportion of wealth devoted to 
future consumption. It is enough to differentiate (14) to obtain
                                         

Another relevant result is the response of the equilibrium share of real monetary 

balances, ω *, to once-and-for-all changes in the intensity parameter, λ . A once-
and-for-all increase in the expected number of devaluations per unit of time causes 
an increase in the future opportunity cost of purchasing goods. This, in turn, per-
manently decreases the proportion of wealth set aside for future consumption. By 
differentiating (14), we get

                                           

Thus, the elasticity of the depreciation rate satisfies:

                                                                                                                    

                                                                                                                       (16)

In other words, portfolio shares are more responsive to changes in the mean expec-
ted depreciation rate than to changes in the expected number of devaluations.

Welfare implications

We assess now the magnitudes of the impacts on welfare of once-and-for-all chan-
ges in the mean expected rate of depreciation and in the probability of devaluation. 
As usual, the welfare criterion, W, of the representative investor is the maximized 
utility starting from the initial real wealth, W0. Therefore, economic welfare is gi-
ven by (see Appendix I, formula (I.3))

[ ]

12

2 2
* 0.

( *) 1 (1 *)
r Bω λν

ε ω ν ω

−
 ∂ = − + + < ∂ + − 

* * 0.
1 (1 *)

ω ν ω
λ ν ω ε

∂ ∂ = < ∂ + − ∂ 

*

1.*

ω
ε

ω
λ

∂
∂ >∂
∂
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(17)

A routine exercise of comparative statics leads to:
                                            
                                         

(18)

 
and

                                                                 (19)

 
As it might be expected, welfare behaves as a decreasing function of both the mean 
expected rate of depreciation. 

Money in utility index

The cash-in-advance assumption is somewhat restrictive in the sense that money is 
only seen as medium of exchange. We ease this assumption by including currency 
directly in the utility function because of its liquidity services. In such a case, the 
stochastic wealth accumulation in terms of the portfolio shares and consumption 
becomes

         
 
(20)

( )

1
0 0 0

2
0

2 2
0

1

2

1( , ; ) ( ,0) 1 log( ) log( *)

1 1 (1 *)* * log .
1

o

W I W W
r

A B
r

ε λ α ω

ν ωω ω σ λ
ν

− ≡ = + + 

+ −   − + + −     +  

W

0
2

1 1 (1 *)log 0,
1r

ν ω
λ ν

∂ + − = < ∂ + 
W

0
2
* 0 ,

r
ω

ε
∂ = − <
∂
W

( ) ( ) ( )
0 0

1 1
d d d d 1 d

1

d ,

t
t t t t t t t

t

W W r t z x q

c t

ν ω
φ ω ω σ σ

ν
 + − 

= − − + + −  +  
−
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where φ  depends on exogenous parameters. The expected utility at time t = 0, V0, 
now takes the form:

                                    
(21)

We have chosen again the logarithmic utility function to generate closed-form 
solutions. 
The first order conditions for an interior solution to the problem of maximizing 
(21) subject to (20) are given by (see Appendix II)

                       
(22)

where  D and B are taken as in section 2. The second equation above is similar to 

that of (14), except for the factor 1/(1 + )θ  that now appears in the first term of 
the left-hand side of (22).

Concluding remarks

We have presented a stochastic model of exchange rate and interest rate risks. 
Specifically, it was assumed that agents have expectations of the exchange rate 
depreciation driven by a mixed diffusion-jump process and a diffusion process 
guides the real interest rate. By using a logarithmic utility, we have derived explicit 
solutions and examined the dynamic implications of uncertainty. Our analytical 
framework, in which the expectations of devaluation are driven by a combination 
of Brownian motion with a Poisson process and the real interest rate is guided by a 
Brownian motion, provides new elements to understand the consumer behavior.  

Several of the obtained results throughout this research deserve further attention 
and discussion. For example, it is observed from Equation (9) that the returns of 
real money balances for low levels of volatility in prices may lead to a negative 
trend due to inflation. Nonetheless, this trend can be reversed for higher levels of 
volatility, since fluctuations in prices, although large, can be upward (inflation) or 
down (deflation); and in the last case the trend can be positively modified. With 

[ ] 0
0 0 00

E log( ) log( ) d .r t
t tV c m e t Fθ

∞ − = +  ∫

( )
0 0

)
and ,

1 (1 1 1t t
r rc W D Bθ
θ θ

λν ω
ω ν ω

= − = +
+ + + −
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respect to equation (10), after replacing the optimal proportion of wealth allocated 
for holding real balances (which, on the basis of equation (14), is maintained cons-
tant by the agent to manage future uncertainty), it is concluded that consumption 
should be always proportional to wealth. When the level of volatility remains cons-
tant, the above result is similar to that found in Modigliani (1971) in the following 
sense: a risk-averse agent (with logarithmic utility) to deal with future uncertainty 
should continue the strategy of maintaining its consumption proportional to his/her 
wealth. On the other hand, if a consumer-investor makes decisions on portfolio and 
consumption in a deterministic environment and has access to both bonds (free 
of default risk) and real balances, then the agent can determine his/her optimal 
consumption path. Whereas in the stochastic case, the consumption path cannot 
be determined because consumption becomes a random variable; a situation clo-
ser to reality. Finally, we have that an increase in the probability of a jump in the 
exchange rate and a rise in the average expected rate of depreciation may lead to a 
reduction in the economic welfare of the agents, that is, their levels of satisfaction 
will be lessened; the same arguments and considerations apply when money is 
included in the utility function (according to equation (22)).

It is worthwhile mentioning that the results obtained strongly depend on the as
sumption of logarithmic utility, which is a limit case of the family of constant rela-
tive risk aversion utility function. The extension of our stochastic analysis to such 
a family does not provide closed-form solutions, and result might be only obtained 
via numerical methods. More work is needed in the above aspect.

Finally, we believe that more research should be undertaken in this stochastic fra-
mework to include government transfers and a stochastic budget constraint for the 
government (in a full general equilibrium), and to extend the analysis to include 
both non-tradable and durable goods. Needless to say, further work is required in 
this regard.



Francisco Venegas Martínez and Abigail Rodríguez Nava

20

Appendix I

The Hamilton-Jacobi-Bellman equation for the stochastic optimal control problem 
of maximizing (13) subject to (11) is

           

  (I,1)

where

                                         

is the agent’s indirect utility function and I
W 

(W
t 
, t) is the co-state variable. The 

first-order condition for an interior solution is:
                                                                                                                       
                                                                                                                        (I.2)

Given the exponential time discounting in (13), we postulate I (W
t 
,t) in a time-

separable form as

                                                
(I.3)

where  0δ  and 1δ  are to be determined from (I.1). Substituting (I.3) into 
(I.1), and then computing the first-order conditions in (I.2), we find that  
                is time invariant and

                                                
(I.4)

{ 01
0

2 2 2 2 21
02

max max  log( ) ( , ) ( ) ( , )

( , ) (1 ) 2 (1 ) Cov(d ,d )

1 (1 ) , ( , ) 0,
1

r t
t t W t t t t t

t t t t t t t t

t
t t

WW

H W e I W t W r I W t

I W t W x z

I W t I W t

ω ω
α ω ρ ω

ω σ ω σ ω ω

ν ωλ
ν

−−≡ + − +

 + + − − − 

 + −   + − =   +    

1 0( , ) max E log( ) dr s
t t t tt

I W t W e s
ω

α ω
∞ −−= ∫

0.Hω =

[ ]1 0
0( , ) log( ) ,r t

t tI W t e Wδ δ
−= +

( )1

1 .
1 1

A Bλν ω
δ ω ν ω

− = +
+ −
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Coefficients     0 and   1 are determined from (I.1). Thus,    1 = r0
–1 and 

           

Equation (I.4) is cubic with one negative and two positive roots, and only one root 
satisfying 0 < ω * < 1, as sketched in Fig. 1. There is also a transversality condi-
tion,

                                                               

that is also satisfied.

Appendix II

The Hamilton-Jacobi-Bellman equation for the stochastic optimal control problem 
of maximizing (21) subject to (20) is
                      

       (II.1)

The first-order conditions for an interior solution are given by:

                                                      
   (II.2)

1
0

0 0

2 2
2 0

1
log

2

1 1 1 (1 *)1 log( *) * ( *) .
1

A B
r r

λ
ν ωδ α ω ω ω σ

ν
− −

+ −    = + − + +       +  

lim ( , ) 0,tt
I W t

→∞
=

0 and       0.cH Hω= =
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We postulate I (Wt , t) = 0r te− [ 1 log(W
t
 )+ 0], where 0 and 1 are to be de-

termined from (II.l). Substituting I (Wt ,t) into (II.l), and then computing the first-
order conditions in (II.2), we find that ω

t
 ≡ ω  is time invariant,

                                 
  (II.3)

Coefficients 0 and 1 are determined from (II.1). Thus, 

                                                                                                                      

                                                                                                                      (II.4)

The second equation in (II.3) has the same properties as those in (I.4).

Appendix III

The generalized Itô’s lemma for mixed diffusion-jump processes can be enuncia-
ted as follows: Given the homogeneous linear stochastic differential equation:

                                             

and g (y
t
) twice continuously differentiable, then the “stochastic” differential of g 

(y
t
) is given by

               

(III.1)

( )1 1

1and ,
1 1

t
t

Wc D Bθ
δ δ

λν ω
ω ν ω

= − = +
+ −

0
0

0

2 2
2

0

0
1

log
2

log
1

1 1 log( *)

1 1 (1 *)* ( *) .
1

r

r

D B
r

θ
δ θ

θ

θ
λ

ω

ν ωω ω σ
ν

−

+
+

  
= +      

+ + −   − + +     +  

1 1 2 2d ( d d d d )t t t t ty y t z z qµ σ σ θ= + + +

[ ] [ ]
1 2 1 2

1 1 2 2

2 2 21

2
d ( ) ( ) ( ) 2Cov(d ,d ) d

( ) d d ( )(1 ) ( ) d .

t y t t t t t t

y t t t t t t t

yyg y g y y g y z z y t

g y z z y g y g y qθ

µ σ σ

σ σ

  = + + +   
+ + + + −
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Equation (9) follows from a simple application of (III.l). The solution to the homo-
geneous linear stochastic differential equation:

                                    

is given by
                              

(III.2)
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