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Abstract 
 
This paper aims to implement a credit risk model in infrastructure investment projects, where the 
probability of default is estimated considering the cash flow available for debt service, which determines 
the debt service cover ratio. For that, a structural model developed for illiquid assets is used, such as an 
extension of the credit risk models such as Merton (1974) and KMV of Moody’s, through which the 
components of the probability of default, exposure, recovery rate and expected loss are analyzed. The 
main innovation of this approach is due to the incorporation of a dynamic of the debt service cover ratio, 
which is modelled stochastically following the same assumptions of the option pricing theory. In addition, 
this model is complemented with the Monte Carlo simulation technique, under which some main 
parameters are estimated, as well as the expected loss and the credit Value-at-Risk (VaR). 
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Resumen 
 
Este trabajo tiene como objetivo implementar un modelo de riesgo de crédito en proyectos de 
infraestructura, donde se estima la probabilidad de incumplimiento teniendo en cuenta el flujo de efectivo 
disponible para el servicio de deuda y su ratio de cobertura. Para ello, se utiliza un modelo estructural de 
riesgo de crédito desarrollado para activos líquidos, como una extensión de los modelos de Merton (1974) 
y KMV de Moody’s, mediante el cual se analizan los componentes de probabilidad de incumplimiento, 
exposición, tasa de recuperación y pérdida esperada. La principal innovación de este enfoque se debe a la 
incorporación de una dinámica propia de la ratio de cobertura del servicio de deuda, el cual se modela 
estocásticamente siguiendo los mismos supuestos de la teoría de valoración de opciones financieras. 
Además, este modelo se complementa con la técnica de simulación de Monte Carlo, bajo la cual se estiman 
algunos parámetros esenciales, así como la pérdida esperada y el valor en riesgo (VaR) crediticio. 
 
 
Código JEL: C14, G13, G21 
Palabras clave: credit risk; probability of default; stochastic process  

 

Introduction 
 

Project Finance involves the design of a complex financing structure that links private investors together 

with the aim of financing, building, and managing complex infrastructures, generally of a public nature 

(Grimsey & Lewis, 2002). The main objective of this scheme has been to increase government efficiency 

through the generation of incentives1 and the allocation and transfer of risks2 (Yescombe, 2002; Gatti, 

2008). Under this scheme, a special purpose vehicle (SPV) is created on an ad hoc basis independent of 

the sponsors and with limited resources from them. 

  In addition, according to Gatti (2008), project finance has distinctive characteristics compared 

to traditional corporate finance, such as: i) it is a structured form of off-balance sheet financing; ii) the 

SPV requires a level of specificity that determines its purpose and associative nature; iii) sponsors' 

resources are limited or zero, which represents a high level of leverage with long terms to recover the 

investment; and iv) the financing incorporates significant and extensive control rights for lenders, as well 

as covenants and restrictive clauses. 

 
1The limitations of public resources for infrastructure investment, the restrictions on their borrowing capacity, mainly 
in developing countries, together with the need to improve and expand the provision of public goods and services, have 
led governments to turn to private investors to participate in long-term contractual arrangements known as public-
private partnership (PPP) agreements and private finance initiatives (PFI). 
2The allocation of project risks among the various financing participants is crucial in determining the success of the 
project. Similarly, project financing is based on the establishment of a complex network of contracts in which different 
parties involved with different roles are identified and where the contracts entered into by the SPV not only function 
as a guarantee to access financing, but also allow the transfer of risks to the counterparty that can best manage them. 
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Thus, all economic consequences of the project are directly attributed to the SPV. Therefore, 

debt repayment depends primarily on the project's ability to generate cash flow3, determining its 

creditworthiness. Cash flows are considered the main source of resources to cover the debt obligations 

incurred, i.e., once the project has covered its operating requirements (costs, maintenance, expenses, taxes, 

among others) from the revenues generated. Thus, cash should be sufficient to pay the debt service 

(principal plus interest). Added to this is the absence of a project credit history to serve as a basis for a 

financing decision, as Cappon et al. (2018) indicated. 

Because of these characteristics, the credit analysis must determine whether the investment 

vehicle can pay the debt contracted. The problem lies in the future uncertainty about the success of the 

project, given the different risks that are present in its life cycle phases, for example, a delay in the 

completion of construction due to natural or social events, a reduction in its demand or revenues, or an 

increase in operating costs, among others (Cartea & Figueroa, 2005; Boussabaine, 2014). In addition, any 

breach of the contractors' contractual obligations may disrupt the proper functioning of the project. This 

uncertainty translates into the probability of defaulting on the financing agreement4, that is, a default on 

debt service payments, either partially or in full. 

Consequently, the granting of debt in infrastructure projects, mainly private initiative, has 

incorporated (significant and extensive) control rights for lenders (Borgonovo & Gatti, 2013; Blanc-

Brude, Hasan, & Ismail, 2014), as well as covenants and restrictive clauses (Gatti, 2008; Blanc-Brude, 

Hasan and Whittaker, 2016), while prohibiting new debt issuance from repaying existing debt. Therefore, 

credit analysis in infrastructure projects becomes much more complex (Jobst, 2018; Wang et al., 2019) 

compared to the corporate sector. 

As a result, a rigorous credit risk analysis needs to reflect these characteristics. Nevertheless, 

traditional credit assessment models: i) reduced form models, ii) rating-based models, and iii) structural 

models, cannot be directly applied or present strong limitations for this type of financing, as found in 

previous studies by Klompjan and Wouters (2002), Gatti et al. (2007), Kong et al. (2008), Dong et al. 

(2012), Karminsky and Morgunov (2016), and Wang et al. (2019), among others. In addition, Klompjan 

and Wouters (2002) and Karminsky and Morgunov (2016) agreed that there are limitations associated 

with the limited availability of (historical) default data as well as difficulties in accessing this information, 

along with the diversity in the purpose of each project and its risks, which makes it difficult to determine 

the explanatory variables. 

 
3According to Boussabaine (2014), a structural characteristic of the SPV is its limited discretion in project management, 
focusing as it does all its efforts on cash flow generation, with which it seeks to cover the obligations incurred and 
remunerate all parties involved. 
4In this regard, Jobst (2018) finds that infrastructure projects achieve a recovery rate of close to 80% (on average). 
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Besides these limitations, it is found that the above models do not allow the incorporation of not 

only the effects of debt covenants but also the dynamic nature of the project's payment capacity, as 

indicated by Blanc-Brude et al. (2016). Although this last drawback is overcome in the field of structural 

models, as shown by Freydefornt (2001) and Aragones, Blanco, and Iniesta (2009), who implemented 

models for estimating credit risk in infrastructure projects based on Merton's (1974) and Moody's KMV 

models, limitations remain. In response, Blanc-Brude and Hasan (2016) proposed extending Moody's 

KMV model to estimate the probability of default in infrastructure projects. Unlike previous applications, 

they estimate the probability of default based on a stochastic treatment of the project's payment profile 

dynamics, which is determined through cash on hand. This model was extended by Blanc-Brude et al. 

(2016) to estimate the conditional probability of transition between states (from a risky to a safe state and 

vice versa) by integrating Bayesian inference techniques. 

Similarly, Wang et al. (2019) proposed an adjusted CreditMetrics model with Monte Carlo 

simulation to estimate credit risk based on information provided by project cash flows. Using a qualitative 

analysis supported by Standard & Poor's "recovery scale," they overcame the limitations associated with 

the lack of information and estimated the expected loss and its components. Nonetheless, this application 

presents skews by incorporating subjective elements in the estimation, which the authors themselves 

highlight. 

Based on these developments, this paper aims to implement a credit risk estimation model, 

where the probability of default in infrastructure projects is estimated by incorporating the dynamics of 

the payment profile using the available cash flow and the debt service coverage ratio. For this purpose, a 

structural credit risk model developed for illiquid assets is adopted following the work of Blanc-Brude 

and Hasan (2016) and Blanc-Brude et al. (2016). The exposure and potential loss for a hypothetical toll 

road concession project are also analyzed. This methodology represents an extension of the traditional 

credit risk models of Merton (1974) and Moody's KMV, and the main innovation of this approach is due 

to the incorporation of proprietary dynamics of the debt service coverage ratio (DSCR), which is 

stochastically modeled following the same assumptions of the financial option pricing theory. In addition, 

this model is complemented by the Monte Carlo simulation technique, under which some essential 

parameters are estimated, such as expected loss and value at risk (VaR). 

 

Structural credit risk models 
 

Since the seminal works of Black and Scholes (1973) and Merton (1973), financial option pricing models 

have been adapted to address corporate problems, including credit risk assessment. These developments 

are initially found in the work of Merton (1974) and Merton (1977), as well as in extensions by Black and 
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Cox (1976) and Ingersoll (1977). This paper identifies all these developments as the "Merton model." This 

field comprises the beginning of the credit risk estimation approach based on the structural models5 

presented below. 

 

Merton model 
 

Merton (1974) extended the Black-Scholes formula to contingent claims analysis (CCA) to treat corporate 

problems, where he assumes that a company's debt can be considered a claim on its assets, with an exercise 

price equal to its nominal value and a given maturity date. In this way, he proposes a relation between the 

capital structure and the company's ability to service its debt. For this purpose, it is assumed that the 

evolution of the market value of the company's assets ( VA) follows a stochastic process of the geometric 

Brownian motion type (mBg) given by equation 1. 

 

dVA = μA VA dt +  σA VA dWt 

(1) 

Where μA represents the asset value drift rate, σA its volatility and Wt ∈ [0,T] is a standard Wiener 

process defined on a probability space (Ω,ℱ, P) with a filtration (ℱt)t ∈[0,T]. 

The value of the firm's assets is determined by VA = VE +  VD at an initial time t=0, where VE is 

the market value of the firm's shares, and VD is the value of its debt. In addition, it is assumed that DV is 

represented by the issue of a zero-coupon bond maturing in T and with value B(t, T). Then, if VA < VD 

then the company defaults on its debt, in this case VE = 0, while if VA >  VD, the company pays its debt 

in T and, therefore, VE = VA −  VD. This logic can be represented as a function of the form: 

 

VE =  max (VA − VD, 0) 

(2) 

                Thus, VE is assimilated to a European-style call option with a strike price equal to DV. This 

indicates that if the value of the assets is insufficient to meet the debt, then the shareholders, who hold the 

call option, will not exercise their right and leave the company to their creditors. 

Now, equation 1 can be represented in logarithmic terms. Therefore: 

 

 
5Unlike reduced-form models and those based on ratings, structural models assume that investors have complete 
information about the market and therefore have knowledge of the value of the companies' assets and debt. 
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ln VA = ln V0 + �μ −  
1
2σA

2� t + σA Z √T  

(3) 

Where Z~N(0.1) and, the probability of default of the company (P(t, T)) between t and T, is 

given by 

 

P(t, T) = P[ VA  ≤  VD]  =  P[ ln VA  ≤ ln VD] 

(4) 

Then, in a risk-neutral world, the value of VE is determined by the formula 

  

VE =  VA N(d1)− VD e−rTN(d2) 

(5) 

Where 𝑟𝑟 represents the risk-free interest rate and 𝑁𝑁 (∙) indicates the cumulative normal 

distribution function of the parameters 𝑑𝑑1 and 𝑑𝑑2, as shown in Equations 6a and 6b. 

 

𝑑𝑑1 =  
𝑙𝑙𝑙𝑙 �𝑉𝑉𝐴𝐴𝑉𝑉𝐷𝐷

�+ �𝑟𝑟 +  1
2𝜎𝜎𝐴𝐴

2�𝑇𝑇

𝜎𝜎𝐴𝐴√ 𝑇𝑇 
 

(6a) 

𝑑𝑑2 =  
𝑙𝑙𝑙𝑙 �𝑉𝑉𝐴𝐴𝑉𝑉𝐷𝐷

�+ �𝑟𝑟 −  1
2 𝜎𝜎𝐴𝐴

2�𝑇𝑇

𝜎𝜎𝐴𝐴√ 𝑇𝑇 
=  𝑑𝑑1 − 𝜎𝜎𝐴𝐴√ 𝑇𝑇  

(6b) 

Finally, the probability of default (risk-neutral) is the probability that 𝑉𝑉𝐴𝐴 at 𝑇𝑇 is below 𝐷𝐷𝑉𝑉 . Then 

 

𝑃𝑃 [𝑉𝑉𝐴𝐴  ≤  𝑉𝑉𝐷𝐷]  = 𝑁𝑁(−𝑑𝑑2) 

(7) 

An important limitation of the Merton model is that the parameters of the process are determined 

by equation 1, i.e., 𝜇𝜇𝐴𝐴 and 𝜎𝜎𝐴𝐴, are not directly observable, which makes its application difficult. 

 

Moody's KMV model 
 

Moody's KMV model was initially developed by Vasicek (1984) and later completed by McQuown (1993) 

and Kealhofer (1993) as an extension of the Merton model to estimate a probability of default based on 

the notion of distance to default (DD). Unlike the Merton model, the KMV model assumes that the 
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company defaults when the value of its assets falls below a threshold defined by the value of its debt, 

which determines the point of default. 

Figure 1 shows its application based on the representation of a possible trajectory of the market 

value of the assets. There, it is observed that the company has no way to pay the debt if the value of assets 

falls below the default point. Therefore, the probability of default is the probability that the asset's value 

will fall below this point. This probability is represented in the shaded area of the distribution function 

below the default point. 

 

 
Figure 1. Representation of default based on distance to default 

Source: adapted from Kealhofer (2003). 

 

As a result, the model estimates the distance to default as the number of standard deviations by 

which the asset value exceeds the default point. Then, the distance to default (𝐷𝐷𝐷𝐷) is computed as 

 

𝐷𝐷𝐷𝐷 =  
𝑉𝑉𝐴𝐴 − 𝐷𝐷𝑃𝑃

 𝜎𝜎𝐴𝐴 𝑉𝑉𝐴𝐴
 

(8a) 

Where 𝑉𝑉𝐴𝐴 represents the value of assets and 𝜎𝜎𝐴𝐴 their volatility. For a limited liability company, 

the equity, which is determined by the market value of the shares (𝐸𝐸𝑉𝑉), has the residual claim on the assets 

after all other obligations have been fulfilled. Consequently, a call option on assets with a strike price 

equal to the debt has the same properties as those indicated in Merton's model. Thus, taking the same 

assumptions about 𝑉𝑉𝐴𝐴, 𝑉𝑉𝐸𝐸 and 𝑉𝑉𝐷𝐷, given by equations 1 and 5, DD could be estimated using equation 6b. 

Then 

Market value of assets 

Trajectory of 
asset values 

 

Distribution 
of asset value 

Default Point 

Probability of default Distance to Default 
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𝐷𝐷𝐷𝐷 =  
𝑙𝑙𝑙𝑙 �𝑉𝑉𝐴𝐴𝑉𝑉𝐷𝐷

�+ �𝑟𝑟 −  1
2𝜎𝜎𝐴𝐴

2�𝑇𝑇

𝜎𝜎𝐴𝐴√ 𝑇𝑇 
 

(8b) 

Nevertheless, since 𝜎𝜎𝐴𝐴 is not observable, 𝐷𝐷𝐷𝐷 is approximated by equation 8b, while the 

probability of default (risk-neutral) at a maturity T is determined by 

 

𝑃𝑃 [𝑉𝑉𝐴𝐴  ≤  𝑉𝑉𝐷𝐷]  = 𝑁𝑁(−𝐷𝐷𝐷𝐷) 

(9) 

As a result, this model establishes that 𝐷𝐷𝐷𝐷 is sufficient to estimate the probability of default, 

where the numerator of equation 8b determines the level of financial leverage associated with the 

company's level of financial risk. At the same time, the denominator reflects its level of market risk. 

 

Credit risk estimation model for infrastructure projects 
 

The estimation of the probability of default, together with the other components required for the 

quantification of credit risk (expected loss) in the corporate sector, has been widely studied in financial 

theory, where credit evaluation is performed based on the information provided by balance sheets and 

financial statements, as well as their historical performance (Gatti et al., 2007). In this context, structural 

models present advantages for their estimation; however, in infrastructure projects, the development of 

proprietary models has been scarce, and the above models present limitations. In this regard, the Basel 

Committee in the framework of the Basel II Accord (Basel, 2004) highlighted the limitations of using 

conventional credit risk models6 in the structured financing of infrastructure projects. Based on the 

distinction between corporate finance and structured project finance, the Committee recommended the 

implementation of different methodologies to determine the expected loss of credit risk (EL), considering 

the three components: 

 

𝐸𝐸𝐸𝐸 = 𝐷𝐷𝑃𝑃 𝘹𝘹 𝐸𝐸𝐿𝐿𝐷𝐷 𝘹𝘹 𝐸𝐸𝐸𝐸 

(10) 

Where 𝑃𝑃𝐷𝐷 is the probability of default, 𝐸𝐸𝐿𝐿𝐷𝐷 is the loss given default, and 𝐸𝐸𝐸𝐸𝐷𝐷 is the exposure 

at default. 

 
6This distinction is made to refer to the Merton and Moody's KMV models. 
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As indicated above, in project finance, cash flow is the determining factor in the value of the 

assets and therefore determines the debt repayment capacity. Initially, this value is the only benchmark7 

considered in the project's financial structuring to determine the debt's size. Therefore, credit risk is 

associated with the future uncertainty of the project's cash flows, and its dynamics determine the payment 

capacity and the probability of default. Thus, the assessment of credit risk is determined by the possibility 

that, at any given time, cash flows will be insufficient to service debt. 

Recent work has shown that structural models can be used to estimate credit risk in projects (see 

Blanc-Brude et al., 2014; Blanc-Brude & Hasan, 2016). Nevertheless, these models merit special 

treatment with some adjustments. For example, the incorporation of control rights for lenders (Borgonovo 

& Gatti, 2013) and debt covenants significantly affect the estimation of expected loss and its components, 

thus requiring a redefinition of default. Similarly, the model specification regarding cash flow allows the 

use of observable information to obtain the model parameters. For example, Blanc-Brude and Hasan 

(2016) showed that understanding the dynamics of the debt service coverage ratio (𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷), together with 

the amortization profile and available securities8, which are observable, is sufficient to implement a 

structural model. 

The first key step in estimating credit risk is the modeling of cash flows for each point in time 

t, where default occurs in those scenarios when cash flows are insufficient to pay debt service (principal 

and interest). Thus, determining the project's ability to pay based on DSCR is essential for its application. 

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 measures the amount of cash available to make debt service payments (CFADS) at time t, and is 

estimated as 

 

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑡𝑡 =  𝐷𝐷𝐶𝐶𝐸𝐸𝐷𝐷𝐷𝐷𝑡𝑡 𝐷𝐷𝐷𝐷𝑡𝑡�  

(11) 

Where 𝐷𝐷𝐷𝐷𝑡𝑡 represents debt service at t. The higher the DSCR, the more cash the project will 

have to meet its debt obligations. DSCR dynamics facilitate the implementation of a structural credit risk 

model since DSCR levels determine default thresholds. According to the authors, the DSCR provides an 

explicit definition of the point of default as: 

i. "hard" default, determined by 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 = 1; 

ii. "technical" default, determined by 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 = 1, 𝑥𝑥. 

 
7According to Gatti (2008), the project generally possesses assets that define a specific character determined by its 
contractual design 
8One form of collateral for lenders is that which is available at the "tail" of the life of the debt. According to, Blanc-
Brude and Hasan (2016), the presence of these distinctive features makes structural credit risk models a natural choice. 
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Thus, knowledge of the 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 dynamics is enough to estimate the distance to default (𝐷𝐷𝐷𝐷). 

Similarly, 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 dynamics can also be combined with future debt service to calculate the expected value 

and volatility of future cash flow. Despite their estimation of both 𝐷𝐷𝐷𝐷 and the probability of default, the 

other components of the 𝐸𝐸𝐸𝐸 have limitations that should be noted. Generally, lenders, in their effort to 

reduce their risk exposure, require the SPV to create cash reserve accounts to cover part of the future debt 

service, which increases their recovery rate and reduces the total exposure in the event of a default event. 

Therefore, the estimation of these components requires a stepwise analysis, as will be discussed below. 

 

Dynamics of DSCR and determination of the probability of default (non-compliance) 
 

Since the behavior of the 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 is strongly related to the project's credit risk, knowledge of the 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 

distribution is sufficient for its estimation. If the stochastic dynamics of the DSCR follows a log-normal 

process, then 

 

𝑑𝑑 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑡𝑡
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑡𝑡� = 𝜇𝜇 𝑑𝑑𝑑𝑑 +  𝜎𝜎 𝑑𝑑𝑊𝑊𝑡𝑡 

(12) 

Where 𝜇𝜇 and 𝜎𝜎 represent the DSCR drift rate and corresponding volatility, which are known and 

constant, while 𝑊𝑊𝑡𝑡 ∈ [0,𝑇𝑇] is a standard Wiener process. Now, since the point of (technical) default is 

determined by 

 

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑡𝑡  ≡ 𝐷𝐷𝐶𝐶𝐸𝐸𝐷𝐷𝐷𝐷𝑡𝑡
𝐷𝐷𝐷𝐷𝑡𝑡�  < 1. 

(13) 

Where CFADS is the cash flow available for debt service, then analogous to Moody's KMV 

model, the distance to default at each t is 

 

𝐷𝐷𝐷𝐷𝑡𝑡  =  
𝐷𝐷𝐶𝐶𝐸𝐸𝐷𝐷𝐷𝐷𝑡𝑡 − 𝐷𝐷𝐷𝐷𝑡𝑡
𝜎𝜎𝐶𝐶𝐶𝐶𝐴𝐴𝐷𝐷𝐶𝐶 𝐷𝐷𝐶𝐶𝐸𝐸𝐷𝐷𝐷𝐷𝑡𝑡

 

(14) 

Where 𝜎𝜎𝐶𝐶𝐶𝐶𝐴𝐴𝐷𝐷𝐶𝐶 is the volatility of CFADS. In order to avoid any problems due to the scale 

dependency of CFADS, the cash flow is re-expressed in terms of DSCR 

 

𝐷𝐷𝐶𝐶𝐸𝐸𝐷𝐷𝐷𝐷𝑡𝑡 =  𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑡𝑡  ×  𝐷𝐷𝐷𝐷𝑡𝑡 

(15) 
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Using this CFADS definition, the distance to default can be expressed as 

 

𝐷𝐷𝐷𝐷𝑡𝑡 =
1

𝜎𝜎𝐶𝐶𝐶𝐶𝐴𝐴𝐷𝐷𝐶𝐶
�1 −

1
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑡𝑡

� 

(16) 

Similarly, Equation 16 can be rewritten as a function of DSCR alone by expressing CFADS 

volatility as a function of DSCR volatility (𝜎𝜎𝐷𝐷𝐶𝐶𝐶𝐶𝐷𝐷) 

 

𝐷𝐷𝐷𝐷𝑡𝑡 =
1

𝜎𝜎𝐷𝐷𝐶𝐶𝐶𝐶𝐷𝐷
𝐷𝐷𝐷𝐷𝑡𝑡−1
𝐷𝐷𝐷𝐷𝑡𝑡

� 1 −
1

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑡𝑡
� 

(17) 

Where 𝜎𝜎𝐶𝐶𝐶𝐶𝐴𝐴𝐷𝐷𝐶𝐶 = � 𝐷𝐷𝐶𝐶𝑡𝑡−1
𝐷𝐷𝐶𝐶𝑡𝑡

� 𝜎𝜎𝐷𝐷𝐶𝐶𝐶𝐶𝐷𝐷9. Similarly, the probability of default (Pt,T) is determined by 

DDt: 

 

𝑃𝑃(𝑑𝑑,𝑇𝑇) = 𝑁𝑁(−𝐷𝐷𝐷𝐷𝑡𝑡) 

(18) 

Nonetheless, this measure incorporates the risk preferences of investors. Since Equation 12 

shows the dynamics of the DSCR in terms of the drift rate (μ), the probability estimation requires a risk-

neutral adjustment, where the risk premium (Sharpe coefficient λ) is introduced, which is estimated for a 

horizon 𝑇𝑇: 𝜆𝜆 =  𝜇𝜇−𝑟𝑟
𝜎𝜎 √ 𝑇𝑇 10F

10. Thus,: 

 

𝑄𝑄(𝑑𝑑,𝑇𝑇) = 𝑁𝑁(𝑁𝑁−1[𝑃𝑃(𝑑𝑑,𝑇𝑇) +  𝜆𝜆) 

(19) 

Where 𝑄𝑄(𝑑𝑑,𝑇𝑇) is the risk-neutral default probability. Similarly, estimating the probability of 

default can also be performed in a Monte Carlo simulation context, where possible trajectories of the 

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑡𝑡 and 𝐷𝐷𝐶𝐶𝐸𝐸𝐷𝐷𝐷𝐷𝑡𝑡  are generated, seeking to reflect the largest number of possible trajectories. 

Therefore, by modeling the cash flows, it is possible to reflect whether a default event may occur during 

the project's life 

The advantage of this simulation approach lies in its practical ability to incorporate the various 

sources of project risk associated with operational and market uncertainties through probabilistic 

 
9It should be noted that if, given the credit conditions, a fixed installment amortization schedule is adopted, then: 
𝜎𝜎𝐶𝐶𝐶𝐶𝐴𝐴𝐷𝐷𝐶𝐶 = 𝜎𝜎𝐷𝐷𝐶𝐶𝐶𝐶𝐷𝐷, given that 𝐷𝐷𝐷𝐷𝑡𝑡−1 = 𝐷𝐷𝐷𝐷𝑡𝑡 , for the entire period. 
10This risk-neutral adjustment aims to incorporate investors' risk preferences into the CFADS modeling. This indicates 
that, if the cash flows reflect the risky nature of the investment, they should be discounted at the risk-free rate in the 
valuation model. 
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assumptions that reflect their very nature11 and correlations. This way, identifying project risk factors and 

their modeling can have practical advantages. The implementation of the Monte Carlo simulation model 

in stages is detailed below. 

The first stage of the Monte Carlo model implementation, as shown in Figure 1, involves 

incorporating uncertainties into the financial model (the cash flow) by assigning probabilistic assumptions 

on the different sources of uncertainty in the project. This process results in a probability distribution 

function that characterizes the present value of the project's cash flows. The rate of change in the present 

value of cash flows comprises the main input for estimating the volatility of the 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 (𝜎𝜎𝐷𝐷𝐶𝐶𝐶𝐶𝐷𝐷). 

The second stage of the Monte Carlo model implementation (see Figure 3) comprises the 

simulation of 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑡𝑡 trajectories, where it is assumed that it follows a stochastic process of the mBg type. 

Then, for each time t the probability of default is estimated, i.e., falling below a threshold defined in 1, 𝑥𝑥. 

The default point is defined based on the covenants imposed in the debt contract. 

 

 
Figure 2. Stage 1: Modeling uncertainties and volatility estimation  

Source: created by the author 

 

 
11The advantage of adopting different types of probability functions is that the model parameters can be obtained from 
empirical evidence. 

Determine distribution of construction 
t  

Determine distribution of construction 
duration 

Determine distribution of O&M costs 

Determine demand/price distribution 

Determine distribution of inflation rate, 
exchange rate, interest rate, etcetera 

σCFADS 

 σDSCR 

Estimate: 
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Figure 3. Stage 2: Simulation of DSCR trajectories and estimation of the probability of default 

Source: created by the author 

 

In addition, this type of application of the Monte Carlo simulation technique is used by Gatti et 

al. (2007) to estimate the project's value at risk (VaR). The reader should keep in mind that the modeling 

of risk factors represents a critical issue, where one's judgments and criteria greatly affect the risk 

assessment and, therefore, the estimation of the probability of default. 

 

Restructuring of the financing agreement and analysis of default 
 

So far, credit risk has been analyzed in a context where the probability of default is determined by the 

project's ability to pay. Nevertheless, the above analysis should be extended to incorporate the effect of 

restructuring the debt contract in the event of a default. This is because lenders may agree to a 

restructuring, rather than allowing the project to default on the debt given the adverse consequences such 

as loss of credit quality and increased financing costs. 

According to Gatti (2008), the debt contract may incorporate clauses that allow lenders to take 

control measures to prevent the project's repayment capacity from being affected. Therefore, in the event 

of default, lenders will be willing to take corrective measures to keep the project in normal operation12, 

measures that may even generate a loss for them, such as when the restructuring extends amortization 

terms, reduces interest payments, or, on the contrary, accelerates its recovery rate. For this reason, credit 

 
12These corrective measures commonly allow them to renegotiate the current terms of the debt, changing the 
amortization terms, interest payments, and the incorporation of subordinated debt. 

DSCR 

DSCR 
simulated 
paths 

Default Scenarios 

Default Point 

Time 

For every t 

Probability of 

default 

 



C. A. Zapata Quimbayo / Contaduría y Administración 66(1), 2021, 1-24 
http://dx.doi.org/10.22201/fca.24488410e.2020.2510 

 
 

14 
 

risk components such as 𝐸𝐸𝐿𝐿𝐷𝐷 and 𝐸𝐸𝐸𝐸𝐷𝐷 may change in a default scenario, and estimation models must 

incorporate these adjustments. 

Although their application can be complex, they can be incorporated from: i) Black-Cox 

decomposition from the structural model; and ii) Monte Carlo simulation in stages. These proposals are 

detailed below. 

 

Black-Cox decomposition 
 

The Black-Cox decomposition, proposed by Black and Cox (1976), comprises a method used to value 

corporate debt in restructuring or refinancing scenarios when the value of the company's assets reaches a 

limit (lower or upper). Thus, the model proposed by Blanc-Brude and Hasan (2016) should require 

additional adjustment, given that it only considers the dynamics provided by cash flow. This adjustment 

is presented based on a decomposition incorporating the four payment functions below. 

1. 𝑃𝑃(𝑇𝑇𝐷𝐷 ,𝐷𝐷𝐶𝐶𝐸𝐸𝐷𝐷𝐷𝐷𝑇𝑇𝐷𝐷): final payment at maturity of the debt, where T_D represents the 

maturity of the debt. 

2. 𝑃𝑃(𝜏𝜏,𝐷𝐷𝐶𝐶𝐸𝐸𝐷𝐷𝐷𝐷𝜏𝜏): value of assets if CFADS reaches the lower limit, namely a default, at 

time τ, leading to a state of restructuring. 

3. 𝑃𝑃(𝜏𝜏,𝐷𝐷𝐶𝐶𝐸𝐸𝐷𝐷𝐷𝐷𝜏𝜏): value of assets if CFADS reaches the upper limit in time τ and 

corresponds to a refinancing state because it allows the debt repayment to be accelerated, together with a 

reduction in its costs. 

4. 𝑝𝑝′(𝑑𝑑,𝐷𝐷𝐶𝐶𝐸𝐸𝐷𝐷𝐷𝐷𝑡𝑡): debt payment made before maturity or restructuring. 

Thus, the total value of the assets corresponds to the present (expected) value of the sum of the 

four payment functions under the risk-neutral probability measure. If ℎ(𝑉𝑉𝑡𝑡 , 𝑑𝑑) is defined as the value of 

assets at time t, 𝐾𝐾(∙) denotes the interval 𝐷𝐷𝐶𝐶𝐸𝐸𝐷𝐷𝐷𝐷𝜏𝜏(∙),𝐷𝐷𝐶𝐶𝐸𝐸𝐷𝐷𝐷𝐷𝜏𝜏(∙), and 𝑉𝑉𝑡𝑡 is the value of all future cash 

flows, then for each payment function: 

 

ℎ1( 𝑉𝑉𝑡𝑡, 𝑑𝑑) = 𝐸𝐸 �𝑒𝑒−𝑟𝑟𝑇𝑇𝐷𝐷,𝑡𝑡( 𝑇𝑇𝐷𝐷−𝑡𝑡)𝑃𝑃(𝑇𝑇𝐷𝐷,𝐷𝐷𝐶𝐶𝐸𝐸𝐷𝐷𝐷𝐷𝑇𝑇𝐷𝐷)� = 𝑒𝑒−𝑟𝑟𝑇𝑇𝐷𝐷,𝑡𝑡�𝑇𝑇𝐷𝐷−𝑡𝑡� � �𝑇𝑇𝐷𝐷 ,𝐷𝐷𝐶𝐶𝐸𝐸𝐷𝐷𝐷𝐷𝑇𝑇𝐷𝐷�𝑑𝑑𝐶𝐶
∗

 

𝑘𝑘(𝑇𝑇)
 

(20) 

ℎ2( 𝑉𝑉𝑡𝑡, 𝑑𝑑) = � 𝑒𝑒−𝑟𝑟𝐶𝐶𝐶𝐶𝐶𝐶𝐷𝐷𝐶𝐶,𝑡𝑡(𝑇𝑇𝐶𝐶𝐶𝐶𝐶𝐶𝐷𝐷𝐶𝐶−𝑡𝑡)
𝑇𝑇

𝑡𝑡
× 𝑃𝑃 � 𝐷𝐷𝐶𝐶𝐸𝐸𝐷𝐷𝐷𝐷𝑇𝑇𝐶𝐶𝐶𝐶𝐶𝐶𝐷𝐷𝐶𝐶 ,𝑇𝑇𝐶𝐶𝐶𝐶𝐴𝐴𝐷𝐷𝐶𝐶�  𝑑𝑑𝐶𝐶𝑇𝑇𝐶𝐶𝐶𝐶𝐶𝐶𝐷𝐷𝐶𝐶

∗  

(21) 
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ℎ3( 𝑉𝑉𝑡𝑡 , 𝑑𝑑) = � 𝑒𝑒−𝑟𝑟𝐶𝐶𝐶𝐶𝐶𝐶𝐷𝐷𝐶𝐶,𝑡𝑡
(𝑇𝑇𝐶𝐶𝐶𝐶𝐶𝐶𝐷𝐷𝐶𝐶−𝑡𝑡)

𝑇𝑇

𝑡𝑡
× 𝑃𝑃 � 𝐷𝐷𝐶𝐶𝐸𝐸𝐷𝐷𝐷𝐷𝑇𝑇𝐶𝐶𝐶𝐶𝐶𝐶𝐷𝐷𝐶𝐶,𝑇𝑇𝐶𝐶𝐶𝐶𝐴𝐴𝐷𝐷𝐶𝐶�  𝑑𝑑𝐶𝐶𝑇𝑇𝐶𝐶𝐶𝐶𝐶𝐶𝐷𝐷𝐶𝐶

∗  

(22) 

ℎ4( 𝑉𝑉𝑡𝑡, 𝑑𝑑) = � 𝑒𝑒−𝑟𝑟𝑠𝑠,𝑡𝑡 (𝑠𝑠 − 𝑡𝑡)
𝑇𝑇𝐷𝐷

𝑡𝑡
× �� 𝑝𝑝′(𝐷𝐷𝐶𝐶𝐸𝐸𝐷𝐷𝐷𝐷𝑠𝑠 , 𝑠𝑠)𝑑𝑑𝐶𝐶∗

 

𝑘𝑘(𝑇𝑇)
(𝐷𝐷𝐶𝐶𝐸𝐸𝐷𝐷𝐷𝐷𝑠𝑠 , 𝑠𝑠)� 𝑑𝑑𝑠𝑠 

(23) 

Where 𝑑𝑑𝐶𝐶∗ is the probability that 𝐷𝐷𝐶𝐶𝐸𝐸𝐷𝐷𝐷𝐷 falls below the threshold during 𝑇𝑇𝐷𝐷, 𝐶𝐶𝑇𝑇𝐶𝐶𝐶𝐶𝐶𝐶𝐷𝐷𝐶𝐶
∗  defines 

the density function when 𝐷𝐷𝐶𝐶𝐸𝐸𝐷𝐷𝐷𝐷 reaches the default limit, while 𝐶𝐶𝑇𝑇𝐶𝐶𝐶𝐶𝐶𝐶𝐷𝐷𝐶𝐶
∗  defines the density function 

that reaches the upper limit (refinancing). 

Thus, the total value of the assets 𝑉𝑉𝑠𝑠( 𝑉𝑉𝑡𝑡 , 𝑑𝑑) will be determined by 

 

𝑉𝑉𝑠𝑠( 𝑉𝑉𝑡𝑡, 𝑑𝑑) = �ℎ𝑖𝑖( 𝑉𝑉𝑡𝑡, 𝑑𝑑)
𝑖𝑖=4

𝑖𝑖=1

 

(24) 

Where ℎ𝑖𝑖( 𝑉𝑉𝑡𝑡 , 𝑑𝑑) does the i-th payment function determine the value. 

 

Step-by-step simulation based on the Monte Carlo simulation technique 
 

Incorporating restructuring events into the simulation requires first determining, as in the case of a default, 

the triggers that affect the 𝐸𝐸𝐿𝐿𝐷𝐷 and 𝐸𝐸𝐸𝐸𝐷𝐷 components. Regarding the 𝐸𝐸𝐿𝐿𝐷𝐷, it is known that the recovery 

rate depends on future 𝐷𝐷𝐶𝐶𝐸𝐸𝐷𝐷𝐷𝐷 and, therefore, on the value of the project in case of default. Following 

Gatti (2008), a third level (stage 3) should be added to the process indicated in the previous section. Once 

the Monte Carlo model results are obtained (stages 1 and 2), a set of simulations must be run for each 

default scenario to obtain the distribution of 𝐸𝐸𝐿𝐿𝐷𝐷 values. In addition, this exercise can provide additional 

information relevant to the project risk analysis, such as the VaR defined at a confidence level (e.g., 99%) 

and a given time horizon, or for each year of the debt's life. 

 

Application in a road concession project 
 

The structural credit risk model presented will be implemented in a hypothetical toll road concession 

project in Colombia, structured under a BOMT (build-operate-maintenance-transfer) scheme. The 

objective of this application is to guide the reader in the step-by-step implementation of the proposed 

model, although a complete approach will not be given. 
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Project information and assumptions 
 

The project comprises a 120 km toll road concession for 20 years, of which the first three correspond to 

the financing and construction phase and the remaining 17 to the operation and maintenance phase, a 

period in which the SPV will oversee the management of 2 toll booths. The total estimated investment for 

the project amounts to $716.75 billion pesos (COP), of which private investors will contribute 40%, while 

the remaining 60% will be obtained from local banks through a syndicated loan. This syndicated loan 

assumes a 12-year amortization period with a 3-year grace period (construction phase). In addition, the 

amortization assumes a fixed installment method (annuity) with an interest rate of 8% and a minimum 

coverage ratio (DSCR) of 1.2 is considered as the main covenant of the financing. Table 1 summarizes 

this information and the other assumptions of the project's financial model. 

Based on this information, the CFADS and DSCR are estimated for each project year, 

considering that the amount of debt service under the indicated conditions is $57 065 million (COP) for 

the amortization period (years 4 to 15)13. Figures 4a and 4b present these results. 

 

Table 1 
Project assumptions 

Duration 20 years 
Currency Peso COP 
Expected annual inflation 3% 
Total investment (in millions) $716.750 
Operating costs (in millions) $5.700 
Toll rate (average) $19.340 
Average daily traffic (ADT) 7.275 
ADT annual growth 4.5% 
Income tax 34% 
Equity (%) 40% 
Debt (%) 60% 
Interest rate on debt 8% 
Minimum DSCR 1.2 
Cost of equity 10% 
Risk-free rate 4% 

Source: created by the author 
 

 
13It should be noted that in this type of financing it is common to find the sculpted debt method for the amortization of 
the debt. Although this method offers distinct advantages for implementing a multistage model in Monte Carlo 
simulation, it will not be used in this application. 
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(a) Projection of CFADS and DS 

 
       (b) Debt Service Cover Ratio (DSCR) 

Figure 4. Estimation of the distance to default and probability of default 

Source: created by the author 

With these results, it is found that the project meets the debt repayment capacity by finding a 

minimum DSCR of 1.32 for the amortization period. Nevertheless, this result is based on a deterministic 

representation of the financial model and does not fully reflect the risk assumed. Therefore, this analysis 

should be supplemented. 

 

Estimation of the distance to default and probability of default 
 

The first step in estimating the probability of default corresponds to estimating the volatility of 

CFADS (𝜎𝜎𝐶𝐶𝐶𝐶𝐴𝐴𝐷𝐷𝐶𝐶) or DSCR (𝜎𝜎𝐷𝐷𝐶𝐶𝐶𝐶𝐷𝐷). It should be noted that, regardless of which one is used, under the 

assumed fixed installment amortization schedule, it follows that: 𝜎𝜎𝐷𝐷𝐶𝐶𝐶𝐶𝐷𝐷 = 𝜎𝜎𝐶𝐶𝐶𝐶𝐴𝐴𝐷𝐷𝐶𝐶. Given the difficulty in 

estimating this parameter, it is proposed to adopt an approach like that used in real options theory14. For 

this purpose, the method developed by Brandão, Dyer, and Hahn (2012) is used. Under this model, the 

volatility of the present value of CFADS is obtained using the Monte Carlo simulation technique15. 

 
14It should be noted that this is not the first time that this approach has been used to address problems specific to the 
financing of infrastructure projects. The theory of real options has been incorporated for risk analysis and valuation, 
where it is assumed that the value of the project follows a diffusion process of the mBg type. 
15In addition, by using this simulation approach, two considerable advantages are identified: i) by incorporating the 
different sources of risk (both operational and market) through probabilistic assumptions, their aggregate effect on the 
project can be estimated in a single measure; ii) these probabilistic assumptions determine the base simulation scenario, 
on which the LGD component or recovery rate in default scenarios can be estimated, which represents a necessary 
input for the estimation of the expected loss. 
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Table 2 presents the probabilistic assumptions used for modeling the different sources of project 

risk and estimating the volatility parameter. 

Table 2 
Probabilistic assumptions of the financial model 

Variable Probability 
function 

Parameters 
Mean Standard deviation 

ADT Log-normal 6.100 540 
Operating costs (in millions) Log-normal $5.700 $500 
ADT annual growth Normal 2.0% 0.2% 
Maintenance Normal 4.5% 0.45% 
Inflation Normal 3.0% 0.3% 

Source: created by the author 
 

These probabilistic assumptions on the identified variables are incorporated so as to be 

consistent with the diffusion process assumed in the DSCR, as indicated in equation 12. The simulation 

exercise employs 100.000 iterations using Crystall Ball. This results in a volatility of 18%. Once the 

volatility is obtained, the risk premium (λ) is estimated, which with a risk-free rate of 4% is 0.0278. As 

indicated by Gatti (2008), one advantage of this approach is the representation of the main sources of 

project risk. 

The next step is to estimate the distance to default (DD) for each year of the amortization period. 

Likewise, the non-compliance point is defined in its two versions (hard and technical) corresponding to 

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑡𝑡 < 1 and 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑡𝑡 < 1.2, respectively. Figures 5a and 5b present the estimates of the distance to 

default and the probability of default. 

 

 
(a) Distance to default 

 
(b) Probability of default 

Figure 5. Estimation of the distance to default and probability of default 

Source: created by the author 
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In its first year, the project reaches the lowest DSCR of the entire period (1.32). Therefore, the 

probability of default in this year will be the highest. As its ability to pay improves, the relation between 

CFADS and debt service for each t increases, and the probability decreases rapidly, which is identified 

for the two points of default. 

 

Estimate of EL and credit VaR 
 

𝐸𝐸𝐸𝐸 takes a similar approach to the probability of default throughout the amortization period, given its 

direct relation with the latter and how EAD and LGD evolve, as shown in Figures 6a and 6b, 

differentiating the estimates for technical and hard default. The fact that this probability drops to near zero 

at the end of the period indicates that EL drops to zero. Specifically, from year 9 of the life of the debt it 

is almost zero. In other words, regardless of the other two components, the asymptotic behavior of the 

probability is directly reflected in EL. 

The same is true for the EAD and LGD components (Figure 6a): at the end of the period, the 

debt has been almost completely paid off, so these two approach zero, as does the probability, and, 

therefore, the EL is almost zero. This dynamic is extremely useful for analyzing credit risk and the 

provisions of the banks that participated in its financing, as it allows a direct and simple estimation of 

these risks. In addition, based on this information, the present value of the total expected loss in each case 

is obtained: $65 550 million in the case of technical default and $221 900 million in the case of hard 

default. Each annual EL is discounted at the loan's interest rate (8%) to obtain these results. 

 

 
(a) Estimation of EAD and LGD (secondary axis) 

 
(b) Estimation of EL 

Figure 6. Estimated expected loss 

Source: created by the author 
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For now, only a static estimate of the EL has been made. As indicated in the previous section, 

additional levels or stages can be incorporated into the Monte Carlo simulation, where the EL distribution 

function is obtained. Once again, by using Crystal Ball, the distribution functions are obtained. Figure 7 

presents the density function of the present value (PV) of EL considering the two types of default, as well 

as the credit VaR (at 99%), that is, the maximum probable loss of the banks that participated in financing 

the project. 

 
Figure 7. Probabilistic estimation of EL and credit VaR 

Source: created by the author 

 

It should be noted that, for simplicity, debt reserves are not considered in the EL estimates. This 

is even more relevant given that the estimate depends directly on the conditions imposed by the banks, 

which are reflected in the covenants. The more risk that banks take on, the higher the requirements will 

be in debt reserve requirements. 

 

Probabilistic analysis of RR 
 

To conclude the analysis of the Monte Carlo simulation approach, a probabilistic analysis of the recovery 

rate (RR) will be performed, taking into account the dynamics of the DSCR as shown in equations 12 and 

13. For this purpose, only hard default will be taken as a benchmark, i.e. 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑡𝑡 < 1, where, like Blanc-

Brude and Hasan (2017), it is assumed that in a hard default scenario, the SPV will be liquidated. Here 

the banks will be able to recover the amount of debt paid by the SPV up to date t. This analysis can be 

performed by taking or not taking the debt reserves accumulated up to that time, which have been ignored 

for now. 

(Technical default) 

(Hard default) 
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Figure 8 presents the simulation results. As can be observed there, the estimate of the expected 

recovery rate (𝐸𝐸[𝐷𝐷𝐷𝐷]) differs somewhat, although this difference is unimportant. 

 

 

 

Figure 8. Estimated recovery rate (RR) 

Source: created by the author 

 

The incorporation of debt reserves increases the value of 𝐸𝐸[𝐷𝐷𝐷𝐷] from 72% to 75%, while the 

number of scenarios in which banks achieve full debt recovery increases from 64% to 67%. The above 

results are consistent with analyses by Moody's (2017) and Jobst (2018), which find that the recovery rate 

for the infrastructure sector globally (on average) is in the 70%-80% range. 

 

Conclusions 
 

This paper presented a structural model of credit risk estimation using an integrated approach that 

combines the dynamics of debt repayment capacity following the developments proposed by Blanc-Brude 

and Hasan (2016) and the Monte Carlo simulation technique. An important advantage of this approach is 

that it allows a direct estimation of all components of expected loss (EL), such as the probability of default 

(PD), exposure (EAD) and loss given default (LGD), or recovery rate (RR), considering the future 

uncertainty of the project's cash flow available for debt service payments and its effect on the potential 

loss. In addition, the proposed model can be implemented without major difficulty until a probabilistic 

estimation of all components is achieved. 

This can be a useful tool for banks wishing to quantify credit risk in infrastructure projects. It 

should be noted that, given the complex nature of a default event in these projects, the treatment of credit 

(a) Without debt reserves (b) With debt reserves 
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risk is based on the thresholds determined by the DSCR, which explain the occurrence of a "hard" or 

"technical" default, the latter justified by the presence of covenants and significant control rights for the 

banks. 

Similarly, there are still some limitations of the proposed model that need to be further 

investigated in order to present a much more robust and complete model. First, the reliability of the 

estimates is based on cash flow projections (CFADS) and incorporates a subjective component that is 

limited to the experience and knowledge of the initiative's structure and may generate some biases. 

Second, a proper analysis of refinancing or credit restructuring scenarios, in order to identify the optimal 

repayment schedule such that the recovery rate is maximized (or risk is minimized) for banks, would 

require the incorporation of real options theory, as suggested by Blanc-Brude, Hasan and Whittaker 

(2016). 
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