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Abstract

Using financial information from Spanish companies belonging to different economic sectors, this study has developed
focused and unfocused models for bankruptcy prediction. The comparison of both types of models has allowed us to
determine the superiority of unfocused models, which in most cases show a great predictive capacity and reduce the
elaboration cost of numerous focused models. This study also provides insight into the variables that explain bankrupt-
cy in different economic sectors and helps decision making on the use of a specific model of bankruptcy prediction.
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Resumen

Usando informacion financiera de empresas espaifiolas pertenecientes a distintos sectores econdmi-
cos, este estudio ha desarrollado modelos centrados y descentrados para la prediccion de quiebra. La
comparacién de ambos tipos de modelos nos ha permitido determinar la superioridad de los modelos
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descentrados, que en la mayor parte de los casos muestran una gran capacidad de prediccién y un fuer-
te ahorro de costes de elaboracién frente al desarrollo de numerosos modelos centrados. Este estudio
también aporta conocimiento acerca de las variables que explican la quiebra en los diferentes sectores
econdmicos y ayuda a la toma de decisiones sobre la utilizacion de un determinado modelo de prediccion
de quiebra.

Cadigos JEL: C53; G33
Palabras clave: Prediccion de quiebra; ratios financieros; regresion logistica; sectores econémicos.

Introduction

The prediction of corporate bankruptcy has received special attention in financial research
over the last five decades, with numerous studies focusing on determining the factors behind it.
This monumental research task has generated a wide variety of models, supported in turn by very
diverse methodologies. One of the paths initially taken by the literature was the development of
models that had been built from a sample of companies belonging to several sectors and which,
therefore, could be considered as off-center models (Casey and Bartczak, 1985; Odom and
Sharda, 1990; Altman et al., 1994; Wilson and Sharda, 1994). The development of these off-
center models has been important throughout time, predominantly those built using samples
of medium and large companies from different sectors (Charalambous, Chatitou and Kaourou,
2000; Chen, Hirdle and Moros, 2011; Sangjae and Wu, 2013). The literature on bankruptcy
prediction also highlights the development of models based on samples of companies belonging
to specific sectors of activity, which have been called centered models. The most popular of
the centered models is the one used for credit institutions (Santomero and Vinso, 1977; Martin-
del-Brio and Serrano-Cinca, 1995; Alam et al., 2000). Another of the most popular centered
models has been used for industrial companies (Altman, 1968; Diamond, 1976; Appetiti,
1984; Zavgren, 1985; Grover, 2003). Recently, models have also been developed focusing on
companies from other sectors, such as Internet companies (Wang, 2004), hospitality companies
(Park and Hancer, 2012; Ferndndez, Cisneros and Callején, 2016), agricultural companies
(Mateos-Ronco et al., 2011), construction companies (Gill de Albornoz and Giner, 2013), and
commercial and service companies (Keener, 2013).

A detailed analysis of the literature on bankruptcy prediction allows us to observe the
existence of a definite pattern regarding the building of off-center models as opposed to centered
models, with the former being much more numerous than the latter. However, it is not possible
to draw a definite conclusion on the superiority of one type of model over another (Bellovary,
Giacomino and Akers, 2007). The absence of a practical conclusion on the superiority of
a centered model over an off-center model may be due to the fact that one type of model
and another could not be compared homogeneously due to the disparity of methodologies,
approaches, available databases, time periods and countries, among other issues. Therefore,
the existence of this gap in the literature, which does not make it possible to elucidate the
superiority of off-center models over centered models, is an important research issue that this
work seeks to solve. To this end, this work has selected different samples of Spanish companies
that were and were not in bankruptcy in the 2010-2015 period. Among these samples, some are
integrated by companies that belong to different economic sectors and have been used to build
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off-center models. Other samples contain only companies from a certain sector of activity and
have been reserved for the building of centered models. All the models have been built with
the same methodology, specifically, Logistic Regression. Having both off-center and centered
models developed from homogeneous samples, referring to the same time period and country,
and built with the same methodology, has allowed obtaining robust conclusions on the design
of bankruptcy prediction models in different economic sectors, and on the efficiency of off-
center models, which in most cases imply a great saving of costs compared to the elaboration
and development of numerous centered models.

Our work consists of the following parts. Following this introduction, section 2 offers a
taxonomy of bankruptcy prediction studies. Section 3 presents the methods of analysis used
in this research. Section 4 establishes the process of obtaining and treating the samples, the
variables used, and the criteria considered for their selection. Section 5 presents the results of
the empirical research. Finally, the main conclusions obtained are detailed.

Review of the literature and research hypotheses

The analysis of corporate bankruptcy has received considerate attention in financial research
during the last five decades. Numerous research studies have been carried out focused on
determining the factors that cause corporate bankruptcy, with a special focus on how to predict
it before it happens. The pioneering authors of empirical studies on bankruptcy prediction
were Beaver (1966) and Altman (1968), applying methods of Discrimination Analysis and
Multi-discrimination analysis, respectively. From these initial studies, the main concern in the
literature on bankruptcy prediction was not only to determine which factors to include in the
models, but to assess which method was the most effective in making predictions. According
to this criterion, much of the work has been carried out around the so-called pure individual
classifiers. These include statistical classifiers, such as the Multi-discriminant analysis and
Logistic Regression models, which are based on statistical theory (Ohlson, 1980; Zavgren,
1985; Tseng and Hu, 2010; Pifieiro, de Llano and Rodriguez, 2013). Since the 1990s, other
methods such as artificial intelligence, based on Neural Networks (Tam, 1991; Tam and Kiang,
1992; Wu et al., 2008; Callejon et al., 2013), Vector Support Machines (Shin et al., 2005; Min
and Lee, 2005), Genetic Algorithms (Rafiei et al., 2011; Etemandi et al., 2009), Decision Trees
(Chen, 2011; Gepp et al.,2010; Li et al.,2010), and the Combination of Classifiers (Ravisankar
and Ravi, 2010; Li et al., 2013; Sun et al., 2016) have also been used.

On the other hand, and with reference to the variables considered in the previous literature
as bankruptcy predictors, it can be deduced that the most common was the “Profit after Taxes/
Total Assets” ratio, and that the second most frequently used factor was the “Current assets/
Current liabilities” ratio. In addition, the number of variables considered in the construction of
the models has fluctuated between 1 and 57 (Bellovary, Giacomino and Akers, 2007).

Another term utilized in the literature is global bankruptcy prediction models, which refers
to those that have been developed for companies across a country or region. Korol (2013)
incorporates this approach and makes a comparison between two regions, Platt and Platt (2008)
for three regions of the world, and Alaminos, del Castillo and Altman et al. (2016) at the global
level using a Logistic Regression model. Similarly, Altman et al. (2017) apply the Z-score for
a wide worldwide base of bankrupt companies and Jabeur (2017) uses Logistic Regression of
partial least squares from a diverse base of French companies.
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In addition to the abovementioned works, which have largely developed off-center models,
the literature also highlights those that have been constructed from samples of companies in
specific economic sectors, and which are therefore called centered models. In the Agriculture
sector, the work of D’ Antoni, Mishra and Chintawar (2009) and of Mateos-Ronco et al. (2011)
stands out. D’ Antoni, Mishra and Chintawar (2009) used a sample of agricultural companies
and concluded that characteristics such as size, type of ownership and age of the entrepreneur
were decisive for the probability of bankruptcy. In the Industrial sector, Callejon et al. (2013)
developed a model that achieves an accuracy of 92%, revealing that bankruptcy is negatively
related to the ability to repay debt through the funds generated and the profitability of the
company. Bartoloni and Baussola (2014) provided a centered model using methods of Multi-
Discrimination Analysis and Enveloping Data Analysis and concluded on the superiority of
the latter with regard to predictability. For the Construction and Real Estate sectors, Gill de
Albornoz and Giner (2013) compared the accuracy of the centered models to that of the off-
center models, proving the superiority of the former to the latter. Similarly, with companies in
the Construction sector, Spicka (2013) built a centered model that showed that the inadequate
relation between debt/profitability and the generation of insufficient reserves are potential
causes of bankruptcy. With companies from the Commerce and Services sectors, Keener (2013)
developed a centered model that demonstrated that bankrupt companies had fewer employees,
a lower cash to current liabilities ratio and higher debt to equity ratios, and Fallahpour, Lakvan
and Zadeh (2017) tested several Genetic Algorithms, finding that the profitability variables as
the most significant. Finally, and with companies in the Hospitality sector, Park and Hancer
(2012) built a centered model with which they detected that the variables Maneuvering Fund/
Total Assets, Total Liabilities/Net Equity, and Total Liability/Total Assets were the best
predictors of bankruptcy. For their part, Ferndandez, Cisneros and Callejon (2016) showed that
by using information close to the time of bankruptcy (one or two years earlier), the most relevant
variable to predict bankruptcy in hotels is that which relates EBITDA to current liabilities, but
when using information farther away from the time of bankruptcy (three years earlier), the
return on assets is the most significant variable.

Although the development of bankruptcy prediction models has been important, it is not
possible to find conclusions on the superiority of off-center or centered models in the existing
literature. As indicated earlier, this lack of conclusions comparing both types of models may
be due to the fact that it has not been possible to homogeneously compare one type of model
and another, given the disparity of methodologies, approaches, available databases, time
periods and countries with which the existing models have been built. Consequently, this gap
in the literature, which does not allow us to elucidate the superiority of off-center models over
centered models, has motivated us to formulate the following research hypotheses:

Hypothesis 1 (H1): The introduction of sectoral qualitative variables in an off-center
model improves its capacity to predict bankruptcy.

Hypothesis 2 (H2): An off-center model with sectoral qualitative variables predicts
bankruptcy correctly in any economic sector.

The case of acceptance of hypothesis Hl would modify the off-center model, indicating
that there are sectoral differences to explain the bankruptcy process of companies, but trying
to maintain the maximum degree of similarity between the sectors. For its part, not rejecting
hypothesis H2 would allow a single explanation of how companies go bankrupt in different
sectors.
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Methodology

This work uses Logistic Regression techniques and Model Selection Criteria to contrast
the research hypotheses proposed. Logistic Regression is a classification technique in which
the dependent variable exclusively considers two categories. Moreover, it departs from less
restrictive assumptions than other statistical classification techniques and allows the model to
incorporate qualitative variables (Visauta, 2003). The logistic function is limited between 0 and
1, providing the probability that an element is in one of the two established groups. This means
that, from a dichotomous event, it predicts the probability that the event will or will not take
place. If the probability estimate is greater than 0.5, then the prediction is that it does belong to
that group, otherwise, the assumption would be that it belongs to the other group considered.

The model is based on the quotient between the probability of an event occurring and the
probability that it will not occur. Thus, the probability of an event occurring, P(Yi =1/xi), will
be determined by expression (1).

e(ﬂo+ﬁ1X1+---+ﬂka) 1

(Bo+ B Xy +.+ B Xy) =(Bo+BiXy+..+ B Xy )

P(Yi=l/xi)= 1+e =1+e ¢))

where Po is the constant term and 51 e ,ﬂk are the coefficients of the variables.

The Odds ratio indicates the number of times the phenomenon is more likely to occur than
not and is formulated according to (2).

POL=1) et o)
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The estimated coefficients (ﬁl e ,ﬁk ) represent measures of changes in the Odds ratio. In this
sense, a positive coefficient increases the probability of occurrence, whereas a negative value
decreases the probability of occurrence of the same (Hair et al., 1999). Applying logarithms in
(2) gives a linear expression of the model, as it appears in (3), in which the coefficients would
be estimated by applying the maximum likelihood method.

P(Y, =1)

* I 1-P, =1) _ I & For At B _ Bo+BX, +...+ X,

Y! 3)



6 G. Laguillo et.al. / Contaduria y Administracion 64 (2), 2019, 1-22
http://dx.doi.org/10.22201/fca.24488410e.2018.1488

On the other hand, and in reference to the Model Selection Criteria, this work uses both
Akaike (AIC), as well as Schwarz (BIC) and Hannan-Quinn (HQC) in order to make the
conclusions obtained very robust. These criteria have been successfully employed in previous
research on bankruptcy prediction (for example, Alaminos, del Castillo and Fernandez, 2016).
AIC is the basic criterion among those based on statistical information (Akaike, 1974). In the
general case, it is expressed as it appears in (4).

AIC=2k —2Ln (L) )

where k is the number of parameters and L the maximum value of the likelihood function of
the estimated model. The basic idea underlying the use of the AIC criterion for model selection
is to maximize the logarithm of the expected likelihood function of a given model. Schwarz
(1978) suggested that the AIC criterion might not be asymptotically justifiable and presented an
alternative information criterion based on a Bayesian (BIC) approach. This criterion penalizes
the number of parameters with Lz (n) instead of with 2. Thus, the expression of the BIC criterion
would be as it appears in (5).

BIC = -2Ln (L)+Ln(n)xk ®)

with k being the number of parameters, L the maximum value of the likelihood function of
the estimated model, and n the number of observations.

On the other hand, HQC can be considered a variant of the BIC criterion, with a penalty for
the magnitude of the sample size. Hannan and Quinn (1979) initially suggested this criterion
for selecting the order of self-regression, as it appears in expression (6). As for the AIC and BIC
criteria, this criterion selects the model that minimizes the value of HQC.

HQC = -2Ln (L)+2Ln [Ln(n)] x k (©6)

Data and variables

In order to contrast the research hypotheses established in this work, 12 samples of
Spanish companies were used, 6 of them using information corresponding to 1 year before
the bankruptcy of the companies (t-1) and another 6 with information from 2 years before
bankruptcy (t-2). Samples for both t-1 and t-2 have been considered, including companies
belonging to five economic sectors (agriculture, industry, construction, commerce and services,
and hospitality), and which are used for the construction of off-center models. Samples from
companies in a single sector have also been used for the development of centered models. In
all samples, the same number of bankrupt and non-bankrupt companies has been considered,
following the criteria applied in most bankruptcy prediction studies (Du Jardin, 2015). Within
the scope of this work, a company is considered bankrupt if it has the legal status of bankruptcy,
according to the considerations made by the Spanish bankruptcy law 22/2003 of July 9th,
as well as the following modifications made to it (Royal Decree Law 3/2009 of March 27th
on urgent measures in view of the evolution of the economic situation and Law 38/2011 of
October 10th). For its part, the identification of companies belonging to each sector of activity
has been done in function of the classification carried out by the CNAE-2009 codes, and the
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financial information of said companies was obtained from the SABI database (Iberian Balance
Sheets Analysis System) belonging to Bureau van Dijk (for the financial years 2010-2015). A
breakdown of the number of companies in each sample is shown in Table 1. For the construction
of the models estimated in this work, 70% of the data for each sample (validation data) has been
reserved for the construction of the models, while the remaining 30% of the data has been used
to verify the predictive capability of said models (testing data).

Table 1.
Number of companies in the samples
Estado t-1 -2
Off-center models Not bankrupt 1.500 1.500
Bankrupt 1.500 1.500
Centered models. Agriculture Not bankrupt 300 300
Bankrupt 300 300
Centered models. Industry Not bankrupt 300 300
Bankrupt 300 300
Centered models. Construction Not bankrupt 300 300
Bankrupt 300 300
Centered models. Commerce and Services Not bankrupt 300 300
Bankrupt 300 300
Centered models. Hospitality Not bankrupt 300 300
Bankrupt 300 300

Of all companies in the samples, financial information has been taken to comprise a set
of variables as bankruptcy predictors. All the variables have been selected from the previous
literature on centered and off-center models. For the off-center models, those that have
been considered in 20 or more bankruptcy prediction works have been selected (Bellovary,
Giacomino and Akers, 2007). For the Agriculture centered models, the variables proposed by
D’ Antoni et al. (2009), Mateos-Ronco ef al. (2011), Dietrich et al. (2005) and Wasilewski and
Madra (2008) were used. For the Industry sector models, those previously used by Callejon et
al.(2013), Bartoloni and Baussola (2014), Zhang et al. (2013), Griienberg and Lukason (2014)
and De Andréz et al. (2012) were selected. For the Construction sector models, the variables
proposed by Spicka (2013), Gill de Albornoz and Giner (2013), Minguez-Conde (2006), Stroe
and Barbuta-Misu (2010) and Treewichayapong et al. (2011) were used. For the Commerce
and Services sector models, those used in the work of Keener (2003) and He and Kamath
(2006) were used. Finally, for the Hospitality sector models, the specific variables were those
used in the models by Park and Hancer (2012), Ferndndez, Cisneros and Callején (2016), Cho
(1994), Gu (2002), Youn and Zheng (2010) and Kim (2011). Additionally, and to be used in
the off-center models, other qualitative variables have been incorporated (Agriculture Dummy,
Industry Dummy, Construction Dummy, Commerce and Services Dummy, Hospitality Dummy)
that take a value of 1 if the company belongs to one of the five economic sectors considered,
and a value of 0 otherwise. Along with the previous variables, another dichotomous variable
was used as a dependent variable, which takes the value of 1 if the company is identified as
bankrupt and a value of O otherwise. Table 2 shows the definitions of all the variables used as
bankruptcy predictors.
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Table 2.
Definition of the quantitative variables
Code Definition

Off-center model variables
VD1 Profit after Taxes/Total Assets
VD2 Current Assets/Current Liabilities
VD3 Operating Funds/Total Assets
VD4 EBIT/Total Assets
VD5 Total Revenue/Total Assets
VD6 Quick Ratio
VD7 Total Debt/Total Assets
VD8 Current Assets/Total Assets
VD9 Profit after Taxes/Net Equity

Centered model variables, Agriculture
VCAIl Equity/Total Debt
VCA2 EBIT/Financial Expenses
VCA3 EBIT/Total Revenue

Centered model variables, Industry

VCI1 Operating Income/Total Revenue

VCI2 Sales/Customers

VCI3 (Current Assets-Current Liabilities)/Capital
VCl4 Equity/Non-current Liabilities

VCIS Financial expenses/Total Revenue

VCI6 Ln (Total Assets)

VCI7 Operating Income/Net Equity

VCI8 Total Revenue/Non-current Assets

Centered model variables, Construction
VCCl1 Financial Expenses/EBIT
VCC2 Operating Income/Total Revenue
VCC3 Equity/Total Debt
Centered model variables, Commerce and Services
VCCS1 EBITDA/Total Liabilities
VCCS2 EBIT/Financial Expenses
VCCS3 EBIT/Current Liabilities
VCCS4 Sales/Stocks
VCCSS5 Sales/Total Assets
Centered model variables, Hospitality
VCHI1 EBITDA/Current Liabilities
VCH2 EBITDA/Total Liabilities
VCH3 Total Financial Debt/EBITDA
VCH4 Total Financial Debt /Capital
VCH5 Credit Sales/Customers
VCH6 Free Cash Flows/Total Debt

Results

Tables 3-8 present the main descriptive statistics of the variables selected for the construction
of off-center and centered models for each of the samples. In general, the variables present
different average values for companies that are bankrupt compared to those that are not, which
makes it possible to confirm that they can be used for the construction of the proposed models.
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Table 3.
Descriptive statistics. Off-center models
VDl VD2 VD3 VD4 VD5 VD6 VD7 VD8 VD9
Not bankrupt 0.05  3.37 0.24 0.05 2.14 234 023 0.60 0.04
t-1 021) (11.68) (0.30) (0.41) (11.34) (10.25) (028) (0.29) (1.95)
Bankrupt -0.25 181 0.32 -0.20 1.33 0.74 042 0.59 0.30
(1.00) (467) (044 (0.72) (1.89) (1.22) (047) (031) (239
Not bankrupt 0.05  3.39 0.24 0.05 2.14 2.36 0.23 0.60 0.03
t-2 (0.21) (11.80) (0.30) (041) (11.43) (10.37) (0.28) (0.29) (1.95)
Bankrupt -0.10 2.74 0.37 -007 146 1.63 0.38 0.61 0.07
(0.50) (20.69) (0.38) (044) (2.76) (20.27) (0.86) (0.31) (2.58)
Standard deviation in parenthese
Table 4.
Descriptive statistics. Centered models. Agriculture
VD1 VD2 VD3 VD4 VD5 VD6 VD7 VD8 VD9 VCALl VCA2 VCA3
Not bankrupt 0.02  1.55 020 004 093 1.03 033 045 008 287 499 0.08
t-1 003 097 028 004 0.67 0.95 021 028 007 456 13.18 0.17
Bankrupt -003 099 027 -001 0.66 0.46 047 046 0.16 075 -1.14 -002
007 0.87 028 008 0.84 042 030 029 057 220 1764 029
Not bankrupt 0.05  3.39 024 005 2.14 236 023 0060 003 252 285 0.08
t-2 (0.21) (11.80) (0.30) (0.41) (11.43) (10.37) (0.28) (0.29) (1.95) (4.31) (2.24) (0.17)
Bankrupt -0.10 2.74 037 -007 146 1.63 038 061 007 096 188 0.09
(0.50) (20.69) (0.38) (0.44) (2.76) (20.27) (0.86) (0.31) (2.58) (1.19) (2.93) (0.10)

Standard deviation in parentheses.
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In order to contrast the research hypotheses proposed, the off-center and centered models
shown in Table 9 have been constructed. For the construction of the off-center models, only
the predictive variables that were significant in the previous literature have been used in such
models. For the construction of the centered models, both the predicting variables of the off-
center models and the specific variables of each sector have been used. From the comparison
of the estimated models it is possible to detect significant differences between them since the
centered models select variables specific to each sector as well as some of the off-center models.
The off-center models are mainly comprised of six variables: Profit after Taxes/Total Assets
(VD1), Current Assets/Current Liabilities (VD2), Operating Funds/Total Assets (VD3), EBIT/
Total Assets (VD4), Total Revenue/Total Assets (VDS5), Quick ratio (VD6) and Profit after
Taxes/Net Equity (VD9). Therefore, they select variables that refer to profitability, liquidity
and efficiency as the best bankruptcy predictors. In the case of Agriculture centered models,
the main variables selected are four: Profit after Taxes/Total Assets (VD1), Quick ratio (VD6),
Equity/Total Debt (VCA1) and EBIT/Financial Expenses (VCAZ2). In this case, these variables
are related to profitability, liquidity and indebtedness. On the other hand, in the construction
of Industry centered models, the following variables stand out: Profit after Taxes/Total Assets
(VD1), Current Assets/Current Liabilities (VD2), Operating Funds/Total Assets (VD3), EBIT/
Total Assets (VD4), Quick ratio (VD6), Current Assets/Total Assets (VD8), Equity/Non-
Current Liabilities (VCI4) and Operating Income/Net Equity (VCI7), which together refer
to profitability, liquidity and indebtedness. Regarding the Construction centered models, the
most representative variables selected were Profit after Taxes/Total Assets (VDI1), Quick
ratio (VD6), Total Debt/Total Assets (VD7), Current Assets/Total Assets (VDS8) and Financial
Expenses/EBIT (VCC1), which also include aspects of profitability, liquidity and indebtedness.
For the Commerce and Services sectors, the constructed models mainly select five variables:
Profit after Taxes/Total Assets (VD1), Current Assets/Current Liabilities (VD2), Operating
Funds/Total Assets (VD3), Total Debt/Total Assets (VD7), and Sales/Stocks (VCCS4). These
variables refer to aspects of profitability, liquidity, indebtedness and efficiency. Finally, there
are four significant variables in the Hospitality centered models: Profit after Taxes/Total Assets
(VD1), Current Assets/Current Liabilities (VD2), EBITDA/Current Liabilities (VCH1), and
Total Financial Debt/EBITDA (VCH3). In this case, they refer to aspects of profitability,
liquidity and indebtedness.

As has been proven, the variables of profitability and liquidity are explicative in all of
the estimated models. Furthermore, said models reach a high percentage of accuracy in the
classification (generally above 80%).

If we compare the results obtained in the previous literature regarding the so-called off-
center models, or those developed from heterogeneous samples of sectors, with those estimated
in this work, it can be observed that the results obtained are in an intermediate range, with
previous works that show better and worse results. Thus, we found works that present excellent
results in the test sample, such as that by Shuk-Wern, Voon Choong and Khong (2011), with a
90% success rate, and others that are below our results such as that by Charambous, Chatitou
and Kaourou (2000) with a 77.9% in the test. There is even the result of Chen, Hirdle and
Moros (2011) with a success rate in the test sample of 64.5%. With respect to the variables
used, there is much heterogeneity, without finding a common pattern between the previous
works and the global models developed in this work.

On the other hand, and in relation to the model estimated for the Agriculture sector, only
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Vavrina, Hampel and Janova (2013) used Logistic Regression in their study, with a classification
percentage in the training sample of 71.9% for one year before bankruptcy. In this sense, our
model offers a better result, reaching 78.5% in our training sample and 75.6% in the test sample.
Our estimated model of the Industry sector for t-1 obtained a result of 89.2% in the test sample,
a very similar result to that obtained by Lin (2009) with 89.4%. Only the model of Zhang et
al. (2013) exceeds our result, with a classification power of 95.2% in the test. Below these
results are the works of Zhang et al. (1999), Darayseh, Waples and Tsoukalas (2003) and of
Hu and Tseng (2005). With the work of Lin (2009) the only variable we found in common was
VD5. With the work of Zhang et al. (2013) only the variables VD1 and VC17 were shared. In
the Construction sector, our model had a classification success of 81.5% with the test sample
for t-1, surpassing the result obtained by Minguez-Conde (2006), as it reached only 76.9%.
Among the variables used, we share variable VD1 with Minguez-Conde (2006) and variables
VDI, VD7 and VD8 with Treewichayapong, Chunhachinda and Padungsaksawasdi (2011) .
As regards the Commerce and Services sector, our model obtained a classification percentage
of 83.5% in the test sample. Below these results is the model by Kim (2011), which obtained a
result of 80% with the training sample. The best model estimated for t-1 was for the Hospitality
sector, with a classification success percentage of 91.2%. While this is a notable result, it is
below the one obtained by Kim and Gu (2006b) who achieved a 93%. Two years before the
bankruptcy (t-192), our model for the Hospitality sector registered a success rate of 81% in the
test sample. The works of Kim and Gu (2006a) and Youn and Gu (2010) registered a success
rate of 84% and 85%, respectively, with the training sample. However, they did not validate
their models with test samples.
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For the contrast of hypothesis H1, that is, whether the introduction of sectoral qualitative
variables in an off-center model improves its predictive capability, the off-center models
constructed with qualitative variables were compared to the off-center models without
qualitative variables, using the AIC, BIC and HQC criteria. The results of this comparison
are shown in Table 10. Bearing in mind that the decision rule for the three criteria is to select
the model that offers the least value in the comparison, it is possible to conclude that off-
center models (with qualitative variables) are superior to off-center models (without qualitative
variables). In this manner, the results obtained allow accepting hypothesis H1, implying that
the inclusion of qualitative variables representative of economic sectors enriches and increases
the explanatory capability of the off-center models.

Table 10.
Comparison of the off-center models. Hypothesis H,
Model Selection Off-center models (without Off-center models (with
Criteria qualitative variables) qualitative variables)
t-1 t-2 t-1 t-2
AIC 398.74 461.92 330.40 458.89
BIC 405.34 468.52 341.35 466.19
HQC 395.24 458.42 325.39 455.55

Once it has been established that the off-center models (with qualitative variables)
are superior to the off-center models (without qualitative variables), hypothesis H2 can be
addressed, which tries to contrast whether an off-center model correctly predicts bankruptcy in
any economic sector. For this purpose, the prediction capability of the off-center model (with
qualitative variables) has been proven using the test samples of each of the five economic
sectors selected in this work (Table 11). The results obtained show that off-center models (with
qualitative variables) are capable of successfully predicting sectoral samples. Nevertheless, and
in order to obtain greater robustness in the conclusions, these results have been submitted to the
Selection Criteria for AIC, BIC and HQC models (Table 12). For t-1, hypothesis H2 is accepted
since the off-center models (with qualitative variables) are superior to any centered model.
However, this hypothesis is rejected for t-2, since the Industry centered model is superior to
the off-center model. Therefore, the results obtained assume the existence of a global model
to predict bankruptcy when information close to the moment of bankruptcy (t-1) is used.
These results can be explained by the evidence in previous research which state that the risk
of bankruptcy depends on global effects and not so much on the effect of the sectors (Jabeur,
2017; Altman et al., 2017; Alaminos, del Castillo and Fernandez, 2016; Korol, 2013; Platt and
Platt, 2008).
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Table 12
Comparison between off-center models (with qualitative variables) and centered models. Hypothesis H,
t-1 t-2

AIC BIC HQC AIC BIC HQC
Agriculture
Off-center models (with 84.31 87.96 81.36 102.33 104.75 100.36
qualitative variables) 56.34 63.64 50.43 58.72 63.55 54.77
Centered models
Industry
Off-center models (with ~ 175.94 190.97 169.36 84.26 101.17 76.86
qualitative variables) 112.69 123.96 107.75 175.93 183.45 172.64
Centered models
Construction
Off-center models (with  270.01 278.69 265.73 373.28 383.70 368.15
qualitative variables) 128.25 138.68 123.12 170.28 177.23 166.86
Centered models
Commerce and Services
Off-center models (with  229.61 240.41 224.56 373.38 379.58 369.02
qualitative variables) 117.10 127.90 112.05 167.73 174.93 164.37
Centered models
Hospitality
Off-center models (with ~ 259.87 268.98 255.70 240.21 245.68 237.71
qualitative variables) 98.44 109.38 93.43 131.49 138.77 128.14
Centered models

AIC: Akaike, BIC: Bayesian, HQC: Hannan-Quinn

Conclusions

The objective of this work is to cover the existing gap in the literature regarding the
superiority of off-center or centered models for bankruptcy prediction. We have tried to
elucidate this issue with an ad-hoc design, overcoming the absence of definitive conclusions in
previous literature due to the disparity of methods, approaches, available databases, periods of
time, and countries previously considered. To this end, off-center models and models centered
on five economic sectors have been constructed in this work, all of which used information
from the 2010-2015 period corresponding to Spanish companies, one year (t-1) and two years
(t-2) before bankruptcy.

The empirical results obtained have allowed confirming, firstly, that the inclusion of sectoral
qualitative variables improves the predictive capability of off-center models. And secondly,
that off-center models are superior to centered models in more accurately predicting when
using information close to the moment of bankruptcy (one year earlier). However, when using
information furthest from the moment of bankruptcy, off-center models are superior to centered
models only in particular economic sectors, as the Industry centered model is shown to be
superior to the off-center model tested with the sample of companies of said sector.

As consequence of the previous conclusions and the documentary and empirical research
carried out, we believe that the present work contributes to corporate financial knowledge in
different aspects. First of all, it manages to elucidate a question that, although already pointed
out by other authors, had not been the object of study with a specific design, method and sample.
Secondly, it allows conclusions to be drawn when dealing with a bankruptcy predicting strategy
in different economic sectors. For the most part, an off-center model is able to successfully
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predict bankruptcy in samples of companies belonging to specific economic sectors, which
would entail considerable cost savings in the elaboration and development of numerous centered
models. Thirdly, this work has highlighted the use of sectoral explanatory variables of a specific
nature, which provide much more specific knowledge of the factors that explain bankruptcy.
The knowledge of these variables as specifically sectoral in the explanation of business failure
can help economic agents and users of this information act preventively. Finally, given that
the first step in risk management is to measure risk, an appropriate bankruptcy risk score can
help in this regard. Therefore, before deciding to use a given model, it is necessary to have a
foundation that indicates the limitations of the models and helps determine which of these (off-
center or centered) are best suited to your circumstances.

The conclusions obtained in this work suggest future lines of research that may prove
extremely useful in perfecting bankruptcy prediction models. Thus, it would be interesting,
first of all, to check whether the results obtained with the sample of Spanish companies are the
same as when the models are built with companies from other geographical areas, which would
give these conclusions a high capacity for generalization. Similarly, it could also be relevant to
modify the definition of the considered sectors, broadening the sample size, and thus to verify
whether the conclusions obtained here would be the same in more or less broadly defined
economic sectors. Finally, since the effectiveness of the models is likely to vary according to
the macroeconomic conditions, it would be interesting to know the classification results of the
models at different stages of the economic cycle.
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